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ABSTRACT

Various aspects of the design and operation of a magnetically-

supported superconducting rotor are studied. The forces on a magneti-

cally-supported body are calculated and compared to experimentally

observed values.

A method is presented for calculating the magnetic field and

forces on the surface of a diamagnetic body in the field of one or

more axi-symmetric coils. The force and field effects of a small

deviation from the nominal axial symmetry are derived. The results

of the field calculations are used in the equations of motion to

predict the behavior of a supported superconducting spinning body.

Experimental apparatus and techniques used in achieving tempera-

tures necessary for superconductivity (4°K) are described. Details

of the rotor_ coils, spin up system, and instrumentation are given.

A description of the procedure used in operating the system is given.

The experimental results agree quite closely to those which have

been calculated and it is therefore concluded that this work presents

reliable quantitative tools for designing magnetically-supported,

axially-symmetric superconducting bodies to be operated in nominally

axially symmetric fields. _0 _ _/
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I. I NTRODUCTION

A. PURPOSE

The research described in this thesis was undertaken in support of

a proposed experiment to test the General Theory of Relativity. As

detailed in Chapter II, the original purpose was to construct a mag-

netically-supported cylindrical body and to study and control its

motions while spinning.

During the course of the research it became evident that the details

of the phenomena of superconductive support were not sufficiently es-

tablished to carry out the originally conceived project directly. The

purpose evolved to one of studying the properties of superconductive

magnetic support, of using these studies to develop a mathematical model

for the dynamics of an axially-symmetric spinning body so supported,

and of experimentally verifying the theoretically-established static

and dynamic behavior.

B. UTILITY

The dominant friction forces acting on a magnetically-supported

body are those due to the viscosity of the medium surrounding it. Thus

if the region around the body is nearly evacuated the frictional effects

should be exceedingly small. Indeed, Harding at JPL has measured the

exponential decay constant for a one-inch niobium sphere, spinning in
-6

a pressure of less than 10 mm of Hg, to be about 600 days. This

implies that the friction coefficient is in the order of 10 -6 dyne-

cm/(rad/sec)(assuming a linear friction relation).

The applications for such a low-friction device are many. One of

the most obvious is a gyroscope and much effort has been put forth to

build one (see Chapter II). A second application is a magnetically

supported accelerometer. Such a device should have an extremely low

threshold and therefore would be well suited for measurement of minute

accelerations such as those encountered by a satellite passing through

the rarefied upper atmosphere.
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Another space vehicle application is suggested by the following:

Under certain conditions attitude control can be accomplished most

economically using reaction wheels to store angular momentum in various

directions. If these reaction wheels were magnetically supported they

could operate for a very long time at essentially constant speed with-

out exchanging any of their momentum with the satellite. This would be

particularly appropriate if the satellite had a complete cryogenic

guidance package using superconducting computer circuitry.

One might think that the problem of maintaining low temperatures

would offset the advantages of superconductivity. On the contrary,

with proper insulation four to five pounds of solid hydrogen can keep

a one-foot sphere cold for a year (see Chapter VII) in a completely

passive (and therefore highly reliable) system.

Several laboratory devices would also benefit from the low-friction

properties and other advantages of magnetic support.

C. SCOPE

The scope of this thesis encompasses the following: A method is

presented for calculating the magnetic field and forces on the surface

of a superconducting body in the field of one or more axi-symmetric

coils. The force and field effects of a small deviation from the

nominal axial symmetry -- i.e., if the axis of the body is displaced

and rotated somewhat from the axis of the field -- are derived, and the

results are used in the equations of motion to predict the dynamic

behavior. These results are experimentally confirmed using an instru-

mented, magnetically-supported spinning superconducting body.

D. CONTRIBUTION

This thesis presents the quantitative tools for designing a mag-

netically-supported superconducting body. It draws on an established

method of fluid mechanics to calculate the field and force on an

axially symmetric body in an axially symmetric field, and it extends

-2-



this method to arbitrary small deviations from symmetry. It shows that

the problem of small deviations is similar to that of a body of revolu-

tion at an angle of attack with respect to a fluid, and can be solved

by similar methods.

After calculating the various magnetic parameters and using them

to develop the equations of motion, this work compares the theoretical

results to the observed behavior of an essentially arbitrary axially-

symmetric body. It investigates experimentally problems of _upport,

instrumentation, and operation of such a system and reports their favor-

able solution. It shows very close agreement between the calculated

and observed dynamic behavior.

Whereas in the past only theoretical and experimental work on

spheres has been reported, this thesis extends the state of the art

substantially by establishing the design fundamentals for building

very-low-friction cylindrically symmetric bearings.

-3-



II. THEORY OF SUPERCONDUCTIVE SUPPORT

A. HISTORY

In 1911 the Danish physicist H. Kamerlingh Onnes discovered that

the electrical resistivity of several metals became suddenly immeasur-

ably small as they were cooled to a few degrees above absolute zero

[Ref. i]. This remarkable phenomenon he termed superconductivity. He

later found that this superconductive state could be quenched if the

specimen was brought into a region of magnetic field whose value was

above some temperature dependent critical value.

Professor S. C. Collins of MIT is one of several experimenters who

have attempted to determine the true value of the resistivity of the

superconducting state. He induced a continuously circulating current

in a superconducting lead ring and kept it below the critical field for

approximately two and one half years. During that time he was unable

to detect any degradation in the current whatsoever. From this he con-

-21
cluded that the resistivity of the lead was no greater than i0

ohm-cm (compared with the purest copper, a nonsuperconductor, whose low

-9
temperature resistivity is about i0 ohm-cm). Thus a superconductor

possesses a conductivity which is at least 1012 times that of any

ordinary material.

In 1933 Meissner and Ochsenfeld discovered another distinct prop-

erty of pure superconductors: If a solid superconductor is cooled in a

magnetic field, then this field is expelled during the transition from

the normal to superconducting states, rather than being frozen in as

one would expect from assuming infinite conductivity. This, the Meissner

effect, implies that regardless of the state of the superconductor

above the transition temperature, below that temperature its interior

will be free of magnetic flux.

This apparent reversibility in the transition from the normal to

superconducting states lead F. and H. London to apply thermodynamics to

superconductivity and to propose their phenomenological theory [R el. 2].

One of the consequences of this theory is that the magnetic field

penetrates only a short distance into the interior of a superconductor

"m4m



and, therefore, if the sample has dimensions of the order of millimeters

or larger, it acts like a perfect diamagnet of permeability zero.

In 1952 Ivan Simon of the Arthur D. Little Co. [Eel. 3] noted that

a perfect diamagnet such as a superconductor was repelled rather than

attracted by magnetic fields and therefore could be supported against

the force of gravity by a properly arranged field generator. He cal-

culated the forces on such a body using a hydrodynamic analogy, and

experimentally confirmed his results by stably supporting a sphere.

Simon generated his magnetic field by various methods: Two concentric

but non-coplaner copper coils of different radii were used initially

but had the disadvantage of introducing Joule heating to the low tem-

perature environment; similarly shaped lead rings were used carrying

persistent current; several types of permanently-magnetized rings were

employed. (Evidently the relatively high-field superconductor, niobium,

was not available in suitable form for a coil at this time.) The

levitated sphere was made of two hollow hemispheres pressed out of lead

foil and welded at their equators. His experiments were successful in

that he was able to support the body stably and even rotate it at low

speeds.

Culver and Davis of the RAND Corporation [Eel. 4] proposed in 1987

that a refinement of Simon's basic experiments might prove useful in

constructing a precision gyroscope. They pointed out that a gyroscope

capable of withstanding reasonable accelerations was feasible if the

_otor was a hollow spherical shell constructed of some high-critical-

field material. They proposed that the spin axis orientation of such

a gyro could be read out by optically tracking a pattern scored on the

equator of the ball. Furthermore, they suggested means for minimizing

the residual magnetic flux trapped in the rotor. At the time their

proposal was presented it apparently looked quite promising as an

inertial guidance device.

Dr. T. A. Buchhold started development of a superconducting gyro-

scope at General Electric sometime before 1960. In Eel. 8 he dis-

cusses the gyro and suggests several other applications of superconduc-

tivity. He shows tentative designs for a magnetic thrust bearing and
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an annular bearing around a shaft; a photo of a working model is in-

cluded. He also presents a design for a motor using the diamagnetic

property of superconductors. In a later article [Ref. 6] Buchhold

expands upon the bearing idea, calculating the characteristics /rid

advantages of various configurations.

In 1959 the Jet Propulsion Laboratory undertook development of a

spherical cryogenic gyro using the ideas set forth by Culver and Davis.

The first effort was toward calculating magnetic fields about a dia-

magnetic sphere due to several coils. Methods were developed for

making these calculations both when the axes of the coils and the axis

of the sphere were coincident_ and when the two were offset.

Harding and Tuffias at JPL [Ref. 7, 8] checked these analytical

results by levitating a sphere with a single coil. Figure 9 of Ref. 7

shows a lead-plated ping-pong ball supported by the field of a single

niobium coil. Using the analytical techniques they had developed, they

arrived at a near-optimum arrangement for supporting a spherical rotor.

Experiments have continued under the direction of Dr. Harding with

one particularly startling result; all superconductors so far tested,

although they possess zero De resistivity, seem to be heated when sub-

jected to a low frequency AC magnetic field. This property seems to

drastically curtail the performance of a system which was so optimisti-

cally envisioned at its inception [Refs. 9-11].

Work has continued on the cryogenic gyro at the General Electric

Co. where investigation of low-frequency losses in superconductors has

produced results similar to those of Harding [Ref. 12]. A parallel

study of a superconductive gyro has been carried on at Minneapolis-

Honeywell; their findings are in agreement with those mentioned above.

The history of the Stanford effort is interesting in its own right.

In 1960 Professor L. I. Schiff, chairman of the Stanford Physics Depart-

ment, noted that one of the consequences of general relativity is that

a gyroscope in the gravitational field of the earth does not keep its

angular momentum fixed in space as predicted by Newton, but rather

undergoes a slow precession [Ref. 13]. The effect is enhanced if the

-6-



gyro is carried in a satellite which orbits the earth several times

per day. Unfortunately, the magnitude of the effect, even in a satel-

lite, is only seven seconds of arc per year, much below the random

drift level of any conventional gyroscope [Ref. 14]. On the other hand,

operation in a satellite reduces the required support forces by six

orders of magnitude or more, and thus contributes substantially to the

feasibility of the experiment, [Ref. 15].

Professor W. M. Fairbank suggested that the experiment might best

be carried out at cryogenic temperatures possibly using a magnetically-

supported superconducting sphere. He also proposed [Ref. 16] that the

spin axis orientation readout might be accomplished in the following

way: A magnetically-supported cylindrically shaped body would be made

to spin synchronously and coaxially with the sphere. A _Sssbauer

emitter would be placed on the rotor and a corresponding _ssbauer

absorber on the cylinder (Fig. 1). If the two bodies were spinning

coaxially (Fig. 1A) there would be no relative motion between the

_6ssbauer pair, so that total absorption would be observed at the

counter. When the spin axis of the sphere was inclined to that of the

cylinder (Fig. 1B) there would be relative motion between the emitter

and absorber and this would be detected at the counter.

Experiments by Fairbank and Bol have shown that at reasonable spin

speeds this method will detect angular misalignment of the axes to less

than .1 seconds of arc.

Since the _6ssbauer readout is applicable over a rather narrow

range of relative velocities, it might be best to align the cylinder

with the ball andthen quantitatively read the orientation of the

cylinder with respect to its fixed surroundings by more conventional

optical or capacitive means.

The M_ssbauer readout method depends heavily on being able to track

the cylinder precisely and control its motions accordingly. Consequently,

the natural motions of the cylinder need to be known beforehand so that

adequate compensation can be applied. The original purpose of the work

described herein was to build and test a model of such a cylinder and to

study its natural behavior.

-7-
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B. PHE_A OF SUPEEDONDUCTIVITY

The most significant characteristic of a superconductor is that it

has zero resistance to steady current. If a sample of superconducting

material is cooled in the absence of a magnetic field, then at some

critical temperature, Tc, the resistivity suddenly drops to zero.

(The transition actually takes place over a few hundredths of a degree

for pure samples.) The value of the critical temperature depends on

the material of the sample; e.g., for tin T = 3.72°K, and for
c

lead T = 7.18°K. If a sample is at a temperature T < T and is
c c

then subjected to a magnetic field H on its surface, it will remain

superconducting as long as H is less than some critical value H .
C

For H > H the material reverts to its normally resistive state.
C

This critical field, Hc, is dependent on temperature in such a way

that H c decreases as T increases. Thus there is a region in the

H-T plane inside of which the body is superconducting and outside of

which it is normal (see Fig. 2A).

The critical field versus temperature curves for several materials

are shown in Fig. 2B. Note that the critical field at zero degrees is

also a function of the material and is denoted by Ho; e.g., for tin

H = 306 _rsted and for lead H = 803 5rsted.
o o

A second distinct characteristic of a superconductor is that it

expells magnetic field and therefore acts as a perfect diamagnet. This

property does not follow from the first, for if infinite conductivity

were assumed, then a superconductor cooled in a magnetic field would

trap this field and hold it constant regardless of any variations in

the external field. On the contrary, however, it was found experimentally

that if a superconductor is cooled in the presence of a magnetic field

it then rejects this field during the transition, after which its in-

terior is free of flux. Thu_s the magnetization of a superconductor is

independent of the path by which it arrives at this state.

This flux expulsion property, or Meissner effect, is only valid for

the superconducting material itself. A ring of superconducting material,

for instance, does not expell the flux from its center, but only from

its body. Figures 3A and 3B show such a ring in the normal and super-

conducting states.

--9--
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The energy which drives out the magnetic field during the transition

is a latent energy associated with the mass of material and analogous

to the latent heats of condensation or solidification. Therefore, i£

we expect a certain region to be free of magnetic flux by virtue of

the Meissner effect, that region must necessarily contain superconductirg

material. A hollow superconducting shell, for example, will not free

its interior of flux as a result of the Meissner effect. Any flux

captured within the shell must, however, somewhere penetrate the surface

as seen by the following argument: Consider a shell containing no mag-

netic material but some flux entirely within its interior (Fig. 4A).

Since lines of flux are solenoidal (close on themselves) we may inte-

grate H.ds along a continuous flux line within the interior. For

this integral to be non-zero there must necessarily be some current

enclosed, which is clearly impossible; thus H must be everywhere

zero in this case. It may be concluded that a superconducting shell

either has flux passing through its wall or no flux within its interior.

Figure 4B shows a possible state of flux which penetrates the shell

at its poles. The penetrating flux is held in place by a persistent

current flowing in a surrounding superconducting loop. Note that once

the state of flux has been established and the shell is superconducting,

no changes can be imposed unless the critical field is exceeded_ for

any changes will be opposed by the persistent currents. Thus if such

a shell is cooled in truly zero field it will have no flux passing

through its surface and no flux in its interior.

It should be noted that although the Meissner effect is a property

of the pure superconducting state, many materials, the so called Type II

superconductors, exhibit less than complete flux expulsion or none what-

soever. Niobium-tin for instance, a metal which has the asset of re-

maining superconducting in very high magnetic fields, demonstrates a

very incomplete Meissner effect. Associated with this incomplete

Meissner ef£ect is less-than-ideal behavior under AC magnetic fields

[Ref. 9]. Regardless of their Meissner properties, all superconductors

seem to have zero DC resistivity.

-12-
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F. London [Ref. 2] has shown that Maxwell's equations cannot be used

to describe superconductive phenomena either by letting the resistivity

go to zero or by letting the permeability go to zero, or both. Rather,

London asserts that the current in a superconductor is shared by the

normal electrons and the super (zero resistance) electrons 9 and each

has a different Current density,

J = Jn + Js " (i)

The normal current follows Ohm's Law with resistivity of the normal state

Jn = g E (2)

The supercurrent, on the other hand, obeys a new set of relations, the

London Equations:

= - _/c ,
curl s

(3)

-_ A] s = _ , (4)

-31 2
where A is a constant of the material and of order I0 sec . The

total current obeys Maxwell's equations using the normal value of the

permeability:

curl _ = 4_ _/c + b/c

curl E = - H/c

(5)

(6)

div H = 0 (7)

div E = 4_ p (8)

in gaussian units.

-14-



Neglecting the normal and displacement currents, we may combine

Eqs. (5) and (3) to obtain:

4_
curl curl H = _ .

Ac 2

But curl curl = grad div -_2 and since div H = 0 we have:

w -- _-- M H

Ac 2 k2

-5
where k is known as the penetration depth, and is of order l0 cm.

Thus, for quasi-stationary conditions under which the normal and dis-

placement currents can be neglected, the magnetic field within a super-

conductor obeys the equation:

_ l _ = 0 (9)

k 2

The consequence of Eq. (9) may be illustrated, by considering a semi-

infinite slab of superconducting material z > 0 with a uniform magnetic

field H = H on its surface (Fig. 5). For z > 0 London's equa-
o

tions hold so that Eq. (9) may be employed. The problem is effectively

one dimensional, i.e., variations only in the z direction can take

place so that the equation reduces to:

d2 H
y _ l H

2 2 y
d z k

Therefore H decreases exponentially with z, with a characteristic
Y

length k. Since H falls off so rapidly with z, the interior of
7, .

the body, except for a thin "boundary layer, is shielded from the

external field. In other words, the body acts like a diamagnet.

-15-
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London [Ref. 2, _4] has solved for the magnetic field in and around

a superconducting sphere in a uniform field. The result is as follows:

For spheres of radius R >> k, the external field is distorted exactly

as if the body were a perfect diamagnet of radius R - k. Thus a body

whose dimensions are on the order of millimeters or larger, acts, for

all practical purposes, as a perfect diamagnet.

C. MAGNETIC SUPPORT

The diamagnetic property of superconductors causes repulsive forces

to act on their surfaces and makes magnetic support possible. The

necessary components are an appropriate field generator and a super-

conducting surface on the body to be supported.

The flux exclusion phenomenon is a consequence of zero resistivity

and is not dependent on the Meissner effect if the body is cooled in

zero field. Consider the wire-superconductor system of Fig. 6 and let

the wire have initially no current flowing in it. As the current is

increased from zero to some value flux lines are created which begin to

penetrate the metal surface. These changing flux lines induce currents

which, by Lenz's law, oppose the changing flux. In an ordinary conductor

at low frequencies the eddy currents diminish due to the resistance,

and the field eventually penetrates as if the material were not _here

(assuming non-magnetic material). In a superconductor the eddy currents

persist indefinitely due to the zero resistivity and the flux therefore

does not enter beyond a negligibly thin layer.*

Note that an ordinary conductor at high frequencies exhibits

this same flux expulsion property and its associated repulsive force

because of the finite relaxation time of the eddy currents. The

electromagnetic forces due to this anomalous skin effect have been

suggested as a possible means of low-friction support.
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One of the greatest attributes of this system is that it is in-

herently stable, This can be seen by considering a diamagnetic plane
surface and a nearby current-carrying wire (Fig. 6). The field of

this system can be obtained by superposing an image wire inside the

body and carrying current in the opposite direction. Note that the

actual and image wires repel each other with a force inversely pro-

portional to the distance between them. Thus if the body is being

forced downby gravity_ it will come into somestable equilibrium

position where the gravity force and magnetic force are equal.
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III. DESIGN OF ROTOR-SUPPORT SYSTEM

A. CONFIGURATION

The configuration of the actual integrated rotor-support system

used in the present research was selected on the basis of the following

design criteria:

i. The support should be kept as simple as possible.

2. The supported rotor must be statically and dynamically stable.

3. The weight of the rotor should be kept at a minimum to avoid

the need for high magnetic pressures and therefore high fields.

4. The external diamagnetic surface should be shaped so as to

give the body the minimum possible demagnetiziation coefficient;

i.e., it should locally distort the applied field as little as

possible so that field concentration points and the resulting

high local fields are minimized.

The simplest possible, easily-obtainable field is that due to a

single coil. This has the advantage of being easy to construct in al-

most any size, deviating very little from predicted value at reasonable

distances from the wire, and having the field configuration readily

available analytically and in closed form (see Chapter IV, Section C).

Furthermore, since work is to be done at superconducting temperatures,

zero resistance wire can be used to carry high current through relatively

few turns to give almost any necessary field strength. The current

can be varied to change the magnetic field_ a feature lacking in any

permanently-magnetized field generator. When the desired field strength

has been established, the current can be trapped, thus minimizing the

power fed to the low temperature environment. (Chapter VII, Section C

discusses the flux trapping circuit.)

Static stability studies for a sphere supported by a single coil

have been carried out by Simon [Ref. 3] and Harding [Ref. 7, 8]. They

come to rather diverse conclusions, the former stating that no possible

stable configuration exists and the latter showing the opposite with

experimental verification.
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Roughly speaking, the criterion for static stability is that the

forces generated when the body is displaced from equilibrium be such

that they tend to restore the body to the equilibrium position. Sta-

bility in the vertical direction can be achieved by the principle out-

lined in Fig. 6, i.e., arranging things so that the body moves away

from the field generator as it goes up.

Buchhold [Ref. 5] suggests that lateral stability can be achieved

with _ _il surro,mnding a cylinder. A quantitative analysis (Chapter IV)

shows that this is only true for certain relations ol coil and cy]inder

radius. Stability for rotations about a horizontal axis is not a clear

function of any of the shape parameters, but a few shapes can be pre-

dicted by inspection. A thin disk surrounded by a coil would probably

be unstable when rotated about an axis in its plane whereas a long

cylinder probably would not.

In Chapter IV methods are presented to calculate the forces and

moments generated when an arbitrary cylindrically symmetric body is

translated or rotated.

Dynamic stability at various spin speeds, on the other hand, does

not lend itself to any intuitive approach. In Chapter VI the equations

of motion for a spinning body are written, and the stability for small

displacements is discussed.

Because of the shallow penetration depth the composition of the

interior of the body is arbitrary; in particular, it can be hollow.

Furthermore the main structure of the body can be made of some low-

density, high-strength material such as aluminum, and the superconductor

can then be affixed to the surface by suitable means (e.g., electro-

plating). The thickness of the coating need only be very large compared

to the penetration depth (10 -5 cm).

The quantity known as the demagnetization coefficient can be illus-

trated by the equation:

H = (I = n) H ,
e c
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where H is a uniform parallel field applied to the specimen which
e

just causes the critical field, Hc, to be reached at some point on

its surface, and n is the demagnetization coefficient. The value of

n gives a measure of the amount of distortion the specimen imparts to

the applied field and is only a function of _he body shape, as can be

seen from the following examples.

For an infinitly long cylinder whose axis is parallel to the applied

field, n = 0, for in this case the cylinder does not distort the field

at all and the entire surface of the cylinder reaches the critical field

at once when the applied field reaches H
c"

For a long cylinder whose axis is perpendicular to the applied field,

n = 1/2, for in this case the specimen starts becoming normal when the

applied field becomes H /2. The critical field is reached at a loca-
c

tion on the body which corresponds to the point of maximum velocity in

the analogous hydrodynamics problem (see Fig. 7).

For a sphere n = 1/3, as can be seen by similar considerations.

For an infinitly thin disk whose axis is parallel to the applied

field, n = l, for in this case the strength at the edges is at the

critical value for any applied field whatsoever. If the body were

perfectly diamagnetic for any field then the value at the edge would

be infinity, but long before this happens superconductivity is destroyed

and the rather complicated intermediate state prevails.

It may be inferred from the above examples that in order to reduce

the field distortion and the factor n, the body must be more or less

streamlined and sharp edges should be avoided. The actual value of

the demagnetization coefficient is difficult and unnecessary to cal-

culate, but a computer program used to calculate the field distribution

indicates that rounding the corners smoothes the field fairly well over

the surface of a rotor (see Chapter IV).

It might be mentioned in passing that the problem of avoiding too

high a magnetic field at some points on the specimen is almost exactly

analogous to the hydrodynamic problem of avoiding cavitation. Cavita-

tion occurs when at some point in the flow field the pressure falls

below the vapor pressure of the liquid so that it spontaneously begins
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to boil. Although the actual problem in this case is one of the pres-

sure falling below some critical value, it is completely equivalent,

by Bernoulli's equation, to the velocity exceeding some critical value.

Since the velocity of an inviscid liquid around a solid body is completely

analogous to the magnetic flux density around a similarly-shaped dia-

magnetic body, the problem in the two cases is to keep the local magni-

tude of B, or v, below some critical level. Also, in both cases,

when this requirement is not adhered to catastrophic changes occur so

that the problem is no longer described by the simple potential equa-

tions. Furthermore, the techniques which have been developed to avoid

cavitation (e.g., in hydrofoil design, [Ref. 17]) could well be applied

to the design of superconducting bodies.

B. MATERIAL

The primary consideration in selecting the superconducting surface

metal is that it must have a critical field which is considerably higher

than the fields which will be applied to support it. Were this the sole

consideration, one would select niobium or one of its compounds which

have tremendously high critical fields at 4°K. Unfortunately niobium,

even when prepared in the most careful manner, deviates substantially

from the "ideal" behavior of superconductors. This is not to say that

its DC resistance is non-zero, but rather that it displays almost no

Meissner effect and traps flux prodigiously. Furthermore its AC losses

seem to be unusually high [Ref. 9]. At fields much less than critical,

niobium still might be the best material, but this would involve using

some light substructure and affixing the niobium to its surface.

Harding [Eels. 18-20] has investigated niobium coatings on Lucalox and

quartz balls by the process of pyrolitic decomposition of niobium-

pentachloride with little success. Sputtered films seem to be equally

unpromising [Ref. 18]. To date, no one seems to have reported the

successful electroplating of niobium by standard methods and although

much work has gone into vacuum deposition techniques, it is quite
o

difficult to get films over a few hundred Angstroms thick. Furthermore,

niobium does not lend itself to evaporation because of its high gettering

action.
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From the standpoint of ideal behavior, the best possible material

would be tin. Unfortunately tin is not even superconducting at 4°K

and at 2°K its critical field is only 210 gauss. Tin can only be

used as a superconducting surface if the device to be supported is

extremely light (or equivalently, if the gravity force is extremely

small, as in a satellite).

Lead seems to be a good compromise between niobium and tin. It

displays a fairly complete Meissner effect when prepared carefully and

its critical field at 4°K is 570 gauss, which is relatively high.

It also has the advantage of being inexpensive, easily plated and easily

electropolished. Chapter VII discusses a method for electroplating

lead.
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IV. MAGNETIC FIELD CALCULATIONS

A. INTRODUCTION

The fundamental problem in the design or analysis of a magnetically-

supported body is the calculation of the magnetic forces acting on its

surface. This chapter presents a method for calculating the magnetic

field in the vicinity of any axially-symmetric body due to a coaxial

field generator. The method was developed to calculate potential fluid

flow rather than any electromagnetic quantity, but its application to

electromagnetics is completely valid.

The net magnetic forces acting on the body may be found by integrat-

ing the square of the derived field strength over its surface. Such

things as the maximum field strength, total lifting force and various

stability regimes can then be obtained. Furthermore, the body shape

or field generator configuration can then be optimized for the criterion

that the net force divided by the maximum field should be a maximum.

In this chapter and those following the equations are written in

-7

mks units with _o = 4_ x l0 webers/amp-m. It is often more con-

venient, however, to consider the quantities in electromagnetic cgs

units since centimeters, dynes and gauss are more representative of

the magnitudes encountered. This will give current in abamps (tens

of amperes) and _o = 4_ gauss-cm/abamp = 4_ dyne-cm/abamp 2.

B. MATHEMATICAL FORMULATION

The magnetic force

given by:

dF due to a field B on a surface dS is

-* B 2
dF - dS .

_o 2P'o

In Chapter II it was noted that the magnetic field penetrates a negli-

gibly small distance into the surface of a superconductor so that the

normal component of B at the surface can be considered zero to a

very high approximation. The force equation then reduces to
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B 2
dF = dS

where dF/dS is now a pressure on the surface. The problem is to find

B 2 at every point.

We shall first consider a region exterior to the superconductor

and not including any field generators (i.e., current carrying con-

ductors). Maxwell's equations state:

curl H = 7 + _ ,

-->

div B = 0 .

We shall restrict ourselves to the steady-state case so that D = 0

and our exclusion of field generators gives j = O. Furthermore we

assume the region to contain no magnetic material so that H = _ (in

cgs units) and we have:

curl B = 0 ,

.->

div B = 0 .

The first equation implies that _ can be expressed as the gradient

of a scalar ¢:

B = - grad ¢ . (i0)

The second implies that ¢ satisfies Laplace's equation for:

div B = 0 = div grad ¢ = _¢ .

The boundary conditions follow from the fact that at the surface

Bnormal = - _¢/_n = 0 where n is the direction of the normal.
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Thus the magnetic field may be found by solving Laplace's equation

with the appropriate boundary conditions,

V2_ = 0 , (ii)

]_ =0 ,
s

(12)

where S is the superconducting surface.

Equations (ll) and (12) are exactly the same as those that govern

the flow of an irrotational inviscid fluid about a solid body S. In

the fluid case one would derive the velocity rather than the magnetic

field from the potential function _.

We shall now consider the problem at hand, i.e., an axially-sym-

metric superconducting body in the field of one or more current-carrying

coils. This is analogous in fluid mechanics to a body surrounded by

one or more vortex rings. Figure 8 shows such a body with a single

surrounding coil. The region of interest is that exterior to the body

but excluding the coil. Note that the presence of the coil creates a

subsidiary or source condition on _, for the line integral law for

H gives:

f g-* -_ B V_._S
H.ds = -- ._s = -

P p P

- i

where P is any path surrounding the coil wire (Fig. 8) and i is

the current enclosed. This subsidiary integral condition indicates

that # must have a singularity at the location of the coil. (Recall

that one property of regular potential functions is that _ZTV._s = 0
%.J

around any path as long as V is harmonic.) We are therefore led to

introduce the function _ which is the potential of the coil in free
c

space. Excluding the line of the coil, V2# = 0 everywhere, and
c

furthermore

_c'dS = -_i ,

P

if P surrounds the wire.
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FIG. 8. AXIALLY SYMMETRIC BODY SURROUNDED BY A SINGLE COIL
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Becauseof the linearity of Laplace's equation, we may let ¢ be

the sumof two functions, the coil potential ¢ and the body potentialc

@= ¢ + _ • (13)c

The last function, 9, is harmonic and regular at all points exterior

to the body. Note that _ provides for satisfaction of the subsidiaryc
condition:

since

•ds = _7¢.ds = - _i ,c
F P

 %a-0

The coil potential ¢
c

problem is to find (p

is available analytically (Section D), so the

such that:

V2 £0 = 0 (14)

or

= c + = 0

s S S

-- _n = c =B o
s s n

(15)

Note that the boundary value, B °
n' can be interpreted as the normal

field at the body surface due to the coil if the body had no effect on

the field.

At this point we shall construct the function $ by transforming

the differential equation-boundary condition system to a Fredholm

Integral Equation of the second kind. The method is one outlined by

Kellogg [Ref. 21] and later used by Smith and Pierce [Ref. 22] to solve
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the analogous fluid mechanics problem. The solution employs an artifice:

it assumesthat there is an imaginary material spread on the surface

which is a source of magnetic lines of flux. It adjusts the distribu-

tion of this material so that it will just cancel the externally pro-

duced normal field, B ° .
n

Consider an element of surface dS at a point Q on which there

is an amount of source material _ dS (Fig. 9). Let this material be

such that it produces a field at P

The potential at P is

a dS
dB - 2 QP

rQp

d_(P) =
_(Q)dS(Q)

rQp

If the whole body is covered with this distribution

potential is

22 G(Q)dS(Q)
q)(P) = (_)

_J
rQp

_, then the total

(16)

The field at any exterior point P is found by differentiation:

_(P) = - grad q)(P) = - _a(Q) grad (_--_) dS(Q) .

At a point on the body surface p, the differentiation is not so

straightforward since the integrand becomes singular. Kellogg [Ref. 21]

shows that the field at the surface in the normal direction due to the

sources is given by:

B (P) = + 2_(P) - _(Q) _n (r-_p _ dS(Q)"n
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If these sources g are to be arranged in such a way that they just

cancel the external normal field, as Eq. (15) suggests, then B (p)
n

should be replaced by the known function -B°(p). We then have the
n

integral equation for _:

B°(P> = - 2x_(P) + _g(Q) _n (r_p) dS(Q)°n
(17)

Once the function G has been found then the potential due to the

sources is obtainable from Eqo (16), and the entire magnetic field

from Eqs. (lO) and (13).

Although this method was developed to solve problems of fluid

mechanics, it bears little physical resemblance to them for there is no

surface material analogous to o. On the other hand, it bears a dis-

tinct resemblance to superconductivity wherein eddy currents on the

surface arrange themselves in such a way as to cancel the external

field. It seems likely that the source strength _ has some relation

to the actual current density of the microscopic eddys, although the

relatien is not immediately clear.

To this point the analysis has been very general: the shape of the

body is arbitrary and the external normal field is arbitrary but known.

Solving the integral Eq. (17) under these conditions would be quite a

chore; for certain specializations, however_ great simplifications

occur.

Let the body and the external normal field be axially symmetric so

that any surface point p or Q can be specified by the arc length

from the pole s and the azimuthal angle 8 (Fig. i0). Then

dS = r(s) d@ dr(s) where r(s) is the local radius of the body at So

Also the external normal field, being axially symmetric, is independent

of 8 so that B:(p) = B°(S)°n Since there is no angular variation of

the bohndary value, it follows from Eq. (17) that U is also independent

of 8. _ Therefore Eq° (17) reduces to

A proof of this is given in Ref. 21.
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FIG. 10. BODY POLAR COORDINATE SYSTEM
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L , 2_

n Qp(s,sl8,) de' dr(s'),
o o

where the dummy integration variables are now identified by primes.

Note that the integral in the square brackets is only a function of

the body shape and not of the external field B °. Thus if a body shape
n

is specified, this first integral may be evaluated immediately to give

the influence function:

and

2_

F(S,S') = r(s') / b 1
o _n ro2

--d@' ,

L

/B°(s) = 2_(s) - O(s') F(S,S') dr(s').

o

This one-dimensional integral equation can now be evaluated using the

standard technique of assuming that q is step-wise constant over n

intervals of L. Then

L N s.
3

O(s') F(s_s') dr(s') _ U. F(s,
3

o j=l sj_ I

and this integral again can be evaluated to give the influence coef-

ficients:

S °

(_ij J F(sz,s') dr(s')

Sj_l

And
N

B o ,_ jZ 1

= 2X(_. + 0_.. O.
n. z x3 3
1

N

(_ij + 2_ 5ij)c j .

j=l
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Or in matrix form

(18)

Thus the problem of finding the o's has been reduced to one of solving

a set of simultaneous linear algebraic equations with the only inexact-

ness stemming from the fact that the continuous variable _ has been

replaced by a step-wise constant function. The solution by this

algebraic method may be made as accurate as desired simply by taking

N to be sufficiently large. Note that the number N is effectively

the number of points at which the boundary conditions are exactly met.

At this point it might be valuable to comment on this particular

method of solution and compare it to other methods. First it would

seem more straightforward to solve this axially-symmetric problem by

putting a line of singularities along the body axis and adjusting their

strengths to meet the boundary conditions. This would lead to a one-

dimensional integral equation directly (since the integration would

only be along the symmetry axis) and would therefore be more conveniently

reduced to linear algebra. It seems that for a body with flat ends the

method breaks down, apparently because it involves solving a Fredholm

integral equation of the first kind for which a solution does not

necessarily exist.

A purely analytical solution might be possible for certain types

of axially-symmetric bodies, but such methods are usually practical

only if the boundary conditions are described along a line on which one

of the coordinates is constant. For example, Harding [Refs. i0, ii]

has solved the problem of a diamagnetic sphere in the field of a coaxial

coil. The resulting solution is in closed form and consists of a single

image coil inside the sphere. A similar method can be applied to a

cylinder in the field of a coaxial coil, but the solution can only he

expressed as an integral and does not appear to describe an image.

The integral equation method presented here has a wide range of

applicability. The formulation, Eq. (17), is very general; it refers

to any body in any known external normal field B °. It will be shown
n
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in the following chapters that this formulation leads to a linear algebra

problem for bodies in somenon-axisymmetric external fields. The re-

strictions which reduce the problem to Eq. (18) are not overly severe_

they specify that the body and field must be axially symmetric. This

encompassesa wide class of problems including a radially-symmetric

body in the field of several coaxial coils.

A distinct advantage of the method is that it gives the field on the

surface A_^_÷I ..... _+_^,,÷ enl,,_g ÷_ +_ entire field _ nnp does in

the analytic solution. This occurs because at the time the influence

coefficient matrix [A S is obtained, a similar matrix [C] is calcu-

lated, a typical element of which_ cij , is the tangential field at

the surface point i due to a unit source at j. Similarly when cal-

o
culating B°n another column matrix B t is obtained_ the elements of

which are the tangential field at each describing point due to the

external field generator, Thus the total (tangential) field on the

body is just given by

CB] = [c] Co]+ s°
t

= [C] [A] -I [B:)+ CBt] (19)

A second distinct advantage is now apparent. Once the body shape

has been specified the two square matrices [C] and [A] -I may be

calculated and stored. The form of the field generator affects only

the column matrices (B:} and CBt) , so that for each new coil shape

only these need be changed. This greatly facilitates the computation.

C. EXTENSION TO NONSYMMETRIC CASE

A magnetically-supported body, such as the one described here, wills

when subjected to disturbances, deviate from its nominally axially

symmetric situation. In order to determine the forces which act on the

body when it undergoes such a deviation, it is necessary to calculate

the magnetic field distribution on the surface. The following section
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purports to show that such a calculation is possible in two distinct

cases:

I. The axis of the body is translated through a small distance

(compared to the size of the body) while remaining parallel

to the axis of the coil, and

2. the axis of the body is rotated through a small angle about

an axis lying in the plane of the coil. Note that combining

the two above it is possible to rotate the body about any axis

parallel to the plane of the coil.

The method again uses the integral equation formulation (17) and

reduces it to a set of simultaneous linear equations as in Eq. (18).

The fundamental difference between this and the previous problems is

that because of the asymmetries in the external field B ° is no longer
n

a function of only one variable. In both of the above cases we shall

determine the functions B ° in terms of the natural coordinates of
n

the body and then show that the function, and consequently the integral

equation, can be separated into symmetric and asymmetric parts. The

asymmetric equation will then be solved by techniques similar to those

used on the symmetric equation of the previous chapter.

i. Translation

We shall first consider an axially-symmetric body whose axis

is parallel to, but offset a distance e from the axis of a coil

(Fig. llA). Let the natural cylindrical coordinates of the body be

r, 8, z and those of the coil be _, 9, _. Let the plane of the coil

coincide with z = 0 so that its center lies at r, 8 , z = 6, 0, 0

(Fig. llB). The transformation between the two coordinate systems,

using the angle 5, is given by

p sing = r sin 0

5=_-e

= arctan

6
-- sin e
r

6
1 - -- cos e

r
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For small offsets, i.e., £/r << i, the transformation is

pq r - ¢ cos 69

sing _ (I + E-- cos 0) sin e
r

-- sin e ,5= 6
r

the unit vectors (see Fig. liB) undergo the transformation

u = u cos5 - u sin5
r p

U e = U sin5 + u cos5
P

U = U
z

For small offsets we have

N 6
U = U - U -- sin e

r p q) r

E
u_ = u -- sin e + u

p r cp

U Z = U_ •

The field of the undisturbed coil is symmetric in the p, _,

system so that if its components are Bp, B, B_ then B_ _ 0. We

now have the components of the coil field in the body coordinates:
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B = B [ (r - ecos e), z]
r 10

B 8 = B [(r - 6cos e), z] 6_ sin e
p r

B z = B_ [(r - 6cos e), z].

The form of the above vector transformation suggests a method for

expressing the field of the coil alone in terms of the body coordinates:

B and B_ can be expanded in first-order Taylor Series in e/r
P

B = B (r_z) - 6cos O _r B (r,z)
r p p

B 8 = B (r,z) ! sin O (20)
p r

Bz = B_(r,z) - 6cos 8 _r B E (r,z) .

The normal component can now be found at each point on the body

surface. Let _ equal the angle between the tangent to a point of the

body profile and the axis of symmetry (Fig. llA)

B = cos_ B + sin_ B
n r z

= cos_ (r,z) B (r,z) + sin_ (r,z) B_(r,z)P

- 6COS e [cos_ (r,z) _ B (r,z) + sin# (r,z) _- B.(r,z)].
_r P

Thus we have succeeded in expressing the external normal field in terms

of the natural coordinates of the body. The B so expressed can now
n

be inserted into the integral equation (17). Before doing this, however,

one very important feature of the function B should be noted:
n
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the only effect of the asymmetry is the single factor cos e modifying

the second bracket. This suggests a separation of the function:

B (r,e,z) = B (r,z) -ecos e B (r,z)
n n n

sym asym

(21)

Furthermore, it suggests a similar separation of the integral equation

variable G:

o(r,e,z) = o (r,z) + o (r,e,z).
sym asym

Because of the linearity of the integral equation it can be split into

two equations one involving the symmetric quantities and the other the

asymmetric,

cos_ (r z)Bp(r z) + sin_ (r,z)Bc(r,z)_ = - 2x Osym+ _._ Gsym _8 (1)dS' r

(22)

_B(r,z) _Br_Z) ?-6cos0 cos_(r,z) _ + sin_(r,z) = - 2xO + _O _n(1)dS.
asym JU asym

Note that in the first of these two equations the inhomogeneous

part is a function of (r,z) only and therefore may be solved im-

mediately by the method of Smith and Pierce. The second of these two

equations has as its inhomogeneity a function of (r,z) multiplied

by cos e. Lotz [R el. 23] and Hess [Ref. 24] have both shown that

for such an equation the only dependence of G on e is a factor
asy

cos e. Similarly, the associated potential function _asym is pro-

portional to cos e. Although Hess assumes in his proof that the in-

homogeneity is a specific function dependent on the body shape, it is

essentially arbitrary because of the generality of the body. Thus,

the second equation can be solved by Hess's method for cross flow on

bodies of revolution which is simply a reduction of the integral equa-

tion to linear algebra when the _ has a factor cos e.
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According to Hess, the results of solving the asymme_lic problem

are as follows: The resultant tangential field has a component along

the meridian and proportional to cos e, and another component around

the circumference (in the e direction) and proportional to sin e.

This second component must be added to that of Eq. (20) to obtain the

total field in the e direction; for the B e in Eq. (20) did not

contribute to the external normal field and has therefore not been

acco_q_ _.

The total tangential field on the body is the sum of that due to

the symmetric source distribution (the same as when everything is axi-

symmetric) and that due to the asymmetric sources. In the direction

of the meridian we have

B(s,8) = B (s) + 6cos 8 B (s) , (23)
sym asym

and in the circumferential direction we have

Bs(s) = 6sin 8 B'asym(S),
(24)

where s is again the arc length.

The field having been determined, we are now in a position to cal-

culate the forces on this slightly perturbed body. The body will be

considered to be made up of a series of frUstra of cones, a typical

one of which is shown in Fig. 12. Note that the numerical solution

[Refs. 22-24] assumes the body to be made up of such frustra. The

tangential field at the surface from Eqs. (23) and (24) is

m

= (B + £COS e B ) _ + £sin 8 B' # ,
Bym asym asym
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A
where m is a unit vector in the meridian direction.

direction the force on the segment bounded by

dF = B2/2_o dA where
v v

e and

2 2
r _ r.

dA = o i de
v 2

In the vertical

e t de is

2 ,2B2 = (B + 6cos e B _)2 + 6 sin2@ B
sym asym asym

2
= B + 2 6cos e B

sym sym

to first order in e,

2_ 2 2

f r - r
,__ 2 B ) o i

F 1 (Bsy m + 2 6cos e Bsy m
v 21.x° asym 2

o

de

- _ (r2 - r.2) B 2

2_I° o 1 sym

Thus, to first order in 6, the vertical force is unchanged by the

horizontal offset. The net horizontal force can now be found. Note

that B 2 is symmetrical about the e = 0, x line so that there can

be no force in the e = _/2 direction. In the e = _ direction

however the force on an element is dFh = B2/2_o cos e dA h where

dA h = h d8 (ro + r.)/2.1 Therefore

2_

f( r +r.
Fh _ 2_ol Bsym2 + 2 6cos e Bsy m Basym) cos 8 o 2 I h de

o

= B B _(r + r.) h o

2_o sym asym o i

(25)

Thus the horizontal force is proportional to 6 and involves only the

component of the asymmetric field in the meridian direction°
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If one is only interested in the forces on the deflected body and

not the field distribution then the column matrix B' need not be
asym

calculated. It might be noted that although the change in vertical

force is second order, the variation in its distribution across the

element causes a resultant moment to be applied in the e = _/2

direction

r + r.

dM = o 1 cos e dF
2 v

2_ 2 2

r + r i B 2 r - r.
M = O O 1

2_t ° 2 cos e d92

0

2
(r + r. ) (r - r. )_

O 1 O 1 6
M= --B B

2 2_o sym asym"
(26)

The total horizontal force on the body may be found by summing

those which act on each of the elements, Eq. (25), and the location

of the resultant may be determined by additionally considering the

translation-dependent moments given by Eq. (26). Thus the magnitude

and position of the forces acting on an axially-symmetric body when

displaced from the axis of several surrounding coils have been com-

pletely determined.

2. Rotation

The problem of a body rotated through a small angle about an

axis lying in the plane of the coil shall now be attacked. Again it

will be found that the asymmetries in the normal field contribute only

an additive term with a factor cos e, as in Eq. (21), so that the

integral equation can be split into a symmetric and an asymmetric part

and the latter can be solved by Hess's method.
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Consider an axially-symmetric body whose natural coordinates are

r, e, z or x, y, z, and a coil whose natural coordinates are

P, 9, _. or _,_,_. Let the origins and the y and _ axes coincide

and let the z and _ axes be inclined an angle 5 (Fig. 13). The

relationships between the cartesian and cylindrical coordinates in the

two systems are

2 -1 y
r =_ 2 + Y ; O = tan -- ; x = r cos e ; y = r sin e

V x

d !

2 2
p + _ ; _ = tan -1

; _ = p cos _ ; _ = p sir _ .

(27)

The transformation between the body and coil systems is given by

a rotation about the y axis

U---

x I co I 5 0 - sin 5

Y = t 1 0

Z Lsin 5 0 COS 5

(28)

The relations for the unit vectors are

-- I

cos 5 0 - sin 5

0 1 0

sin 5 0 cos 5

/% ,%

cos 5 _-sin 5

/%
sin 5 _+cos 5

(29)

Also

= _os O

-sin 0
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FIG. 13. BODY AND COIL AXES INCLINED AN ANGLE 5
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COS_ - sin _0

sin _ cos

From Eqs. (29) and (31) we have

{31)

X : COS 5 (COS _0 _ - sin _ _) - sin 5

/% ^ A
y = sin (p p + cos C_

^ _ ^Z = sin 5 (cos _0 _ - sin _0 ) + cos 5

(32)

The cartesian components of the coil field B in the body system

are found by the transformation of Eq. (32). Note that because of the

axial symmetry in the coil system, the component B = O.

B = cos 5 cos _ B - sin 5 B
x p

B = sin_B
y p

(32)

B = sin 5 cos q0 B + cos 5 B_ .
z p

The cylindrical components may now be found using Eq. (30)

B = cos e B + sin e B
r x y

= (cos e cos 5 cos _ + sin e sin _) B
P

B e = - sin e B + cos e B
x y

- cos e sin 5 B_

(33)

= (-sin e cos 5 cos _ + cos e sin _) B + sin e sin 5 B EP

B = sin 5 cos _ B + cos 5 B
z p _'
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In order to express

in the above terms must be explicit functions of r, e,

Therefore it is necessary to find P, 9, _ in terms of

From Eqs. (27) and (28) we have

properly in body coordinates the coefficients

and z.

r_ 8_ z.

_=V c 2 2 los25 x 2 + 2 sin 5 cos 5 xz + sin25 z + y

= arcsin _ = arccos !
P P

= - sin 5 x + cos 5 z .

Using Eq. (27) again gives

2 2 28 ;
=_c0s25 2 28 sin25p r cos + 2 sin 5 cos 5 r cos 8 z + z + r sin

_c 2--" 2 -- + sin= r os 5 cos 28 + sin 2e + 2 sin 5 cos 5 cos 8 z z 25r -5
r

cos _ = [ = COS 5 x + sin 5 z
p P

r (cos 5 cos 8 + sin 5 _ )

p r

sin q) = TI = Y
P P

_ r sin 8

P

= - sin 5 x + cos 5 z .

Assume now that 5 is small so that sin 5 = 5 and cos 5 : i, and

further than z/r 5 << 1. Using these approximations the above trans-

formations become
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d %p_ +25 z- cos 8
r

_r (i + 5 z--cos e)
r

cos_ = cos 9 (I + 5

z sin 2= cos 8 + 5 -- 8
r

z

sin_ _ sin 0 (i 5 D_- - cos _.

= z - 5r cos 8 .

The coefficients on the right side of Eq. (33) become

cos 8 cos 5 cos @ + sin 8 sin @

2e _ _ =_cos + sin28 + 5 z (sin28 cos e sin28 cos 8) i,
r

cos O sin 5 = 5 cos _,

-sin 8 cos 5 cos _ + cos 8 sin @

_ (sin38 2-sin O cos O + cos 8 sin 8 - 5 z + cos 8 sin 9)
r

= - 5 _ sin 8
7

r

sin e sin 5 _ 5 sin O,

sin 5 cos _0 = 5 cos 8 .
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Equation (33) may now be stated as

B = B - 5 cos 8 B_
r p

= 5 sin 8 (B_ - z_ B )
B 8 r p

B = B + 5 cos 8 B
z _ p

The field is still not an explicit function of the body coordinates

since Bp and B_ are in terms of p and _, i.e., B_ = B (_,_)

and B E = Bg(p,_). The coil coordinates are, however, available in

terms of r, 8, z, and B and B can be expanded in a first-order
p

two-dimensional Taylor Series to give

And

B _ B (r + 5z cos 8, z - 5r cos 8)
P P

I _B (r,z)
B (r,z) + 5 cos 8 z P' r

P 5r

I ,z)

_B_(r

B_ = B_(r,z) + 5 cos 8 z _ r .... r

[B_ _Bp(r,z)B _ B (r,z) - 5 cos 8 (r,z) - z _ rr p

[ £Bp(r ]B 8 _ 5 sin 8 B_(r,z) - r ,z)

f-

Bz _ B_(r,z) + 5 cos 8 [IBp(r'z) + z

_B (r,z) 13z p ,, ,

_B _ (r, Z ) 1z

+ r

_B_(r,z) _ r _B_(r'z) 15r 3z "

Thus the external normal field, B (r,8,z), takes a form similar to
n

the offset case as shown in Eq. (21) of the previous chapter. The

integral equation can then be split into a symmetric and an asymmetric

part and the latter solved by Hess's method for bodies of revolution
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in cross flow. The horizontal forces and the moment about any point

can then be calculated by Eqs. (25) and (26).

If the body had been first translated the field of the coil would

not simply be B and B, as used in Eq. (32) but rather would have
P

additive terms of order c. If products of e5 are neglected then the

effect of the first translation is merely to add the e dependent term

of Eq. (21) to the normal field as calculated above. Thus a rotation

of the body about any horizontal axis may be considered as a translation

followed by a rotation about the plane of the coil, and the result will

be correct to first order in 5 .

The method used to calculate the normal field in the translation

case assumes that c/r << l, and in the rotation case it assumes that

<< 1 and zS/r << 1. Note that both of these assumptions fail near

where the body intersects its axis because r goes to zero. The

second also fails when z >> r, as on an infinite cylinder. A body

on which none of the assumptions ever fails must be finite and must

not intersect its axis (as a torous would, for example). For most

other shapes of interest the situation can be partially corrected by

keeping c and z8 small compared to the radius of the first des-

cribing point off the axis, since the external field is actually can-

celled at a point midway between the axis and the first describing

point.

D. COMPUTER PROGRAMS

The first step in calculating the magnetic fields and forces by

the above method is to calculate the normal and tangential influence

coefficient matrices [A] and [C] used in Eq. (19). In Ref. _2

integral formulas are given for the elements of these matrices in
.th .th

terms of the coordinates of the i and j describing points.

The reference suggests that Simpson's rule be used to carry out the

integration and gives a guide for selecting the number of intervals.
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At the same tlue it is convenient to form the matrices [Aasym] and

[Casym] to be used in reduction of the asymmetric integral equation,

Eq. (22), and in evaluating the term B in Eq. (23). Similar
asym

formulas are given in Ref. 24 for elements of these matrices. A pro-

gram called Influence Coefficient Integration (ICI) has been written to

evaluate these four matrices and is listed in Appendix A with its sub-

routines. The x and y coordinates of the body are first read in,

assuming that the x axis is the axis of symmetry (negative z in

Figs. 10, ll, and 13). The integrands are evaluated along each of the

integration strips by the subroutine INTEGR and the actual integration

is performed by the subroutine SIMP. When the matrices are completely

filled, those dealing with the influence in the normal direction, [A]

and [Aasym] , are inverted by INVERT. All four matrices are written

on the blank magnetic tape 12.

Having the influence coefficient matrices, calculations can be made

for the body in an axially-symmetric external field. This is done by

the Axially-Symmetric Body (AXBOD) program of Appendix B. The body

coordinates and [A] and [C] are read in from the tape generated by

ICI. The coil coordinates and strength are read in from cards. The

external field is calculated by the subroutine coILFD using the follow-

ing formulas from §7 of Ref. 25

2 2 2 ]
B = ___I z - K(k 2) + a + r + z E(k 2)

-_ ' r) 2+ 2
r 2_ 2 (a - z

a+r)2+z

K(k2) 2 2 2 E(k2)]
B = ___I 1 + a - r - z

._ r) 2 ' 2
z 2_ 2 (a - r) 2 + z

a + + z

(34)

k 2 = 4ar

(a + r) 2 + z 2
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where K and E are complete elliptic integrals of the first and

second kind respectively; a is the coil radius; r,z are polar co-

ordinates of a system whose origin is at the center of the coil. Once

the field has been calculated it is integrated over the surface to give

the net force in the minus x direction (lift).

The field distribution may be printed by adjusting the control

variable LO, and the maximum field and its location are printed

separately. The subroutine DERIVE provides for printing out the lift

force and maximum field for various currents. The variable KOILN

allows the field to be generated by more than one coil. Note that the

forces due to several coils cannot be added directly since each is

proportional to the field squared. Rather the field of the collection

is first summed and when the square of the sum integrated to give the

force. The program continues to read cards defining coil geometry

until they are exhausted.

The program OFFSET listed in Appendix C solves the problem of a

body whose axis is parallel to but offset from the axes of the coils,

Eqs. (22) and (23). It first calculates the field for the on-axis

body exactly as in AXBOD with the control variable LOFST set equal to

one. It then goes back and reads the asymmetric influence coefficient

matrices and proceeds to solve this problem with LOFST = 2. The

derivatives of the field components are evaluated by the subroutine

FLDDER from the formulas below which are obtained by straightforward

but laborious differentiation of Eqs. (34)

_B _ * *2r _ r*(r .2- 1 + z .2) _I 6z (l-r +z .2)

a c_--_--r = - B _ r--_ + *2 _+ 2_a
r [(l+r*)2+ z*2][(1-r*)2+ z ] [(l+r*)2+z*2] 3/2

E(k 2)

*2 2
-[(l-r*) 2 + z ]
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_B
z

-(l+r*)B
z

(l+r*)2+ z .2
+

(l-r*)(l_r*2+ z*2)B
r

z*[(l-r*)2+ z .2][(I+r*)2+ z .2]
+

2_a

2E(k 2)

r*[(l_r*)2+z .2 ]

i {-I+
*2* 2

(l+r) + z

*2 *2 * 2 *2 * *
(l-r + z )[(l+r ) + z - r (3r +l)]

* 2 *2 '* 2 *2
[(l+r ) + z ][(1-r ) + z ]

k 2 = 4r

(l+r*) 2 + z .2
(35)

where r , z are the natural coordinates of the coil normalized by

(divided by) the coil radius. Since these expressions are relatively

complicated they were checked against the finite difference

B(r + h/2tz) - B(r - h/2tz)
h

for various values of r and z with h = i0 -I through 10 -7 .

The program matrix multiplies to obtain B of Eq. (23) and
asym

then calculates the horizontal force from Eq. (25). The location of

the resultant force is found considering the translation-dependent

moment of Eq. (26). The restoring force constant, location of the re-

sultant, and increase in maximum field per unit offset are printed.

The program listed in Appendix D calculates the field in a body

rotated through an angle DELTA about an axis located at XT. The

program is identified as TILT and operates exactly as OFFSET, that is

it evaluates the symmetric field and then the asymmetric field. In

evaluating the asymmetric external normal field the program first

translates the body through a distance such that when the body is

rotated through the specified angle the body and field axes intersect

at the location given by XT. The derivatives of the field components

with respect to z must be obtained as well as those in Eqs. (35).
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No additional differentiation is necessary, however, as the following

argument shows. Recall that the coil field is derivable from some

scalar potential ¢ introduced in Eq. (13). The componentsare thenc
given by

8¢ 8¢
c c

B = - B = -r _ ; z

8B 82_ 8B 82¢ 8B
z c r c z

8B 82¢ 8B 82¢
r c z c

r_ --= 8r 2 ; z_ --= 8z 2

In cylindrical coordinates

82¢ 8¢ 82¢
V 2¢ = c + l c c

c _r 2 _ _ + 8z 2
_=0

Therefore

8B 82¢ 82¢ 8¢
z c c 1 c

8z 2 8r 2 r

8B
r 1

- - B-T----

or r r

Thus the z derivatives are obtainable from the r derivative of

Eqs. (35); this is done by the subroutine BDERIV. Having obtained

the field, the program calculates the torque about the axis of rotation

using Eqs. (28.) and (26). It prints out this result as well as the

restoring moment per unit rotation, the net horizontal force if any,

and the maximum increase in field per unit rotation.
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E. COMPUTERRESULTS

I. Sphere

In evaluating the results of the various computer programs it

is desirable to compare them to some known standard. This is possible

if one chooses as the body of interest a sphere. As stated earlier,

Harding has solved the problem of a diamagnetic sphere in the field of

one or more coils and, for the case that the axes of the two coincide,

the solution is obtained by an image coil within the sphere (Appendix

A of Eel. 7). The mutual repulsion of the image and actual coils gives

the net lift force. Figure 14 shows two distinct coil-sphere geometries.

A single coil support is shown in Fig. 14A with a .635 cm radius sphere

and a 1.147 cm radius coil. The JPL results are given in Table 1A

along with those of the present method for various elevations z. Note

that the present method was used to meet the boundary conditions at 50

and 100 points. Figure 14B shows a sphere with two coaxial coils of

specified relative geometry. The lift forces for this arrangement are

compared in Table lB.

It should be noted that the results compared were obtained by two

distinctly different methods. Harding determined the coefficients in an

infinite series of Legendre Polynomials to meet the boundary conditions

exactly. Inexactness in his method stems from representing the series

by a finite number of terms, whereas in the present method it stems

from meeting the boundary conditions at a finite number of points.

An analytic solution for an ellipsoid in the field of a coil is

also available [Ref. 26] but the results have not been compared to the

present method.

2. Cylinder

The design criteria for a cylindrically-symmetric body have

been discussed in Chapter III and drawings of the actual rotor are

included in Chapter VII. A IOX tracing of the actual fabricated and

plated rotor was made using an optical comparitor, and from this ii0

describing points were selected for the computer solution. The tracing
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TABLE 1A

COMPARISON OF CALCULATED LIFT FORCES

BY HARDING'S AND PRESENT METHODS

Geometry of Fig. 14A; Constant Coil Strength

z(cm) Lift Force

Harding's Method

(Kilodynes)

Present Method

50 pts I00 pts

1.135 5.443 5.358 5.400

1.435 4.124 4.054 4.088

1.635 2.802 2.753 2.777

z (cm)

1.0234

.635

.4292

-.1816

.0016

TABLE IB

Geometry of Fig. 14B; Constant Coil Strength

for Max Field (o) Lift

Harding 50 pts i00 pts Harding

3.234

27.12

138.5 135. 134. 81.26

95.8 95.4 96.3 91.88

113.5 102.6 104.3 219.2

Force (Kilodynes)

50 pts i00 pts

3.146 3.234

25.74 26.26

77.63 78.77

86.77 88.39

170.4 173.6
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is presented in Fig. 15 along with the locations and strengths of five

ideal (infinite current density) coils which are used to represent

the finite-sized actual coil, an outline of which is shown on the

tracing. The strength of the tangential field is plotted in the normal

direction along the rotor surface to £he scale shown. Note

that in contrast to the usual sort of plot, the spacing of the lines

has nothing to do with the field strength. Each line simply starts at

a point where the boundary conditions are met.

By moving all the coils up or down an equal amount it is possible

to determine the coil current necessary to support a given weight at

various elevations. Figure 16A shows such a relationship for a slightly

different rotor, with experimental points obtained by a capacitive

bridge method discussed in Chapters V and VII. Figure 16B shows the

current and maximum field versus height for the body traced in Fig. 15.

Note that the elevation and current for the minimum of the maximum

field can be read directly from the plot.

The program OFFSET which calculates the restoring forces on the

translated body can also be checked against results for a sphere

obtained by Harding at JPL. The solution for a sphere whose axis does

not coincide with that of the coils is not as simple as the on-axis

case. Harding [Ref. 27] has solved the problem by expanding the body

potential in a series of Legendre Polynomials about the sphere's center.

This method is not limited to small offsets but rather can find the

forces for any sphere-coil system. Table 2 compares the results ob-

tained by the JPL and present methods for the cases shown in Fig. 14.

The present method states that the resultant horizontal force passes

through the sphere's center, as one knows it must because no torques

can act on the body.

For the body of interest shown in Fig. 15 the OFFSET program states

that the line of action of the horizontal force intersects the axis at

a point 2.796 cm below the upper pole. The variation of the horizontal

force location and restoring constant is plotted as a function of ele-

vation in Fig. 17.
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TABLE 2A

COMPARISON OF CALCULATED LIFT FORCES BY

HARDING'S ANDPRESENT METHODS

Geometry of Fig. 14A; Constant Coil Strength

z(cm)

1.135

1.435

1.635

Horizontal Force (dynes/cm)

Harding 50 pts i00 pts

5350. 5200. 5270.

584. 551. 564.

-312. -323. -322.

TABLE 2B

Geometry of Fig. 14B; Constant Coil Strength

Z (cm) Horizontal Force/Unit Offset (d_nes/cm)

Harding 50 pts i00 pts

.4823 116050. 105487. 107156.

1.0234 26878. 26184. 26490.

.635 69700. 67194. 68088.

.4292 135120. 131749. 133998.

-.1816 3453260. 3326130. 3484060.
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The currents in each of the coils is adjusted such that the net up-

ward force is 23.561 kilodynes, the weight of the rotor. Each of the

coils does, however, maintain that proportion of the current indicated

in Fig. 15 so that Fig. 17 effectively shows the variation of the

quantities with increasing current. Note that the restoring constant

k varies over a wide range from 3000 to 30,000 dyne/cm in the interval

of interest. This indicates the effect that when the body is supported

with larger currents at higher elevations it becomes considerably

stiffer laterally. For a coil of slightly larger diameter the body is

actually laterally unstable for the lower elevations. This property

was used in the spin-up procedure (see Chapter VII, Section E). The

resultant or magnetic center of pressure location varies within about

one centimeter of its value of Fig. 15. Note that it is always below

the center of mass.

The results of the TILT program may also be checked using a sphere.

First, the most obvious fact is that rotation of the body about its

center should result in no torque. This has been the case for all

coil-sphere configurations calculated. Second, when the sphere is

rotated through a small angle about an axis far away it should ex-

perience the same horizontal force as when it is simply translated.

In this respect the OFFSET and TILT programs agree. One point should

be mentioned: The program calculates the horizontal force in the

body axis system (x direction of Fig. 13). Thus the axial force on

the sphere, which is still along the original vertical (_ direction),

contributes to the apparent horizontal force.

Rotating the body of interest about the effective center of pres-

sure causes a restoring moment of magnitude 120,400. dyne-cm/radian

and a horizontal force proportional to the weight and rotation. The

variation of this restoring moment between ll7,000 and 142,000 dyne-cm/rad

is plotted in Fig. 17. Note that, unlike k, it varies only 20 per-

cent over the range of interest.
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Onepossible reason for the differences between the JPL and present

results might be mentioned° Harding generated the field of the coil

using Bartberger's tabulation [Ref. 28] whereas here it was evaluated

directly from the elliptic integrals of Eqo(34}, using the algorithm

shown in Appendix Bo There is a small discrepancy between the two

methods and this author feels the second is slightly more accur&teo
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V. EQUATIONS OF MOTION

A. EQUATIONS

Having calculated the forces and torques on the magnetically-sup-

ported body we are in a position to predict its motion. To this end

this chapter will present the equations of motion for the spinning

body and proceed to solve them in the linearized case. The result

will be a prediction of the frequencies and modes of oscillation which

then can be compared to the experimentally observed behavior.

The basic equations of motion we wish to write for the rigid rotor

are

?

M=H

F=mv ,

where M and F are, respectively, the resultant voment (about its

mass center) and force acting on the body, H is its angular momentum

(about its mass center) and v is the translational velocity of the

mass center•

To determine H, consider a coordinate system X,Y,Z whose origin

is at the center of mass of the rotor and the direction of whose axes

is fixed in inertial space (Fig. 18A). Let a rotation about X

through _ go to a new system X, y, Zl, and let a rotation through

e about y go to x,y,z. This last system shall be a symmetry axis

system which does not rotate with the body; i.e., z lies along the

body axis of symmetry, but the coordinate system fixed in the body,

x',y',z', is reached by another rotation through _ about z.

The angular velocity of the x,y,z system is

-_C
oo =Xq)+_e

=  (cose)¢+9 + e(sine)¢.
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The angular velocity of the body is

_B -*C
= _ + z_ .

Assume that the moments of inertia about x' and y' are equal

so that I = I = I, and the x,y,z axes are always principal.
x y

Then

= ? _B = _ I(cos 8)_ + 9 I _ + _ J[(sin 8)_ + _] ,

where I and J are the transverse and polar moments of inertia

respectively. _t is now possible to find the time derivative of

in the inertial system.

o

=H+ xH

= _[I(cos 8 _ - e _ sin 8) + J _(_ + sin e _)]

+ _[I('e + J _ cos 8 (_ + _ sin e)]

+ _ J('_ + _ sin e + e _ cos 8). (36)

To study translational motion consider a fixed reference frame

Xo,Yo 'zo whose axes are parallel to X,Y,Z and whose origin is fixed

in the apparatus at the nominal location of the rotor's center of mass.

The location of the mass center is then given by coordinates Xo,Yo,Z o.

To study forces and torques, let the effective magnetic center of

pressure be located at x,y,z = O,O,z . For small displacements the
P

forces acting on the body are the weight w at the center of mass,

the lift force F and the two horizontal forces at the center of
Z

pressure (Fig. 18B).
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F = _ k(x + e z )
x o p

F = _ k(y ° _ _0 z )
Y P

Fz = w - klZ ° .

Thus the translational equations of motion are

m x =- k(x + e z )
o o p

oo

m yo = - k(y ° _ _ z )
P

,o

m z = - k z .
o 1 o

The torque acting about the center of mass is (to first order in the

coordinates)

_. = - (K + F Zp)@ - F zz y p

= - (K + w z )q) + k(y ° - q) z )zP P P

M.. = - (K + w z )e - k(x + e z )z
]t p o p p

(37)

MZ=0O

To first order in the displacements, _ in the X,Y,Z syste_ is

identical to M in the x,y,z system since the off-diagonal terms

in the transformation between the two systems are all first or higher

powers of the coordinates. Since the derivation of the forces and

torques neglected products of the coordinates this should also be

done in Eq. (36) to be consistent:
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(38)

+ + $ e + a

Note that _ + _ is the component of angular velocity along the axis

of symmetry and, by the last of Eqs. (37), is constant• Let _ + _ = n.

For sinusoidal motions the terms _8 and _28 may be neglected com-

pared to _ and _ because they are third order in the magnitude of

the rotations. We then have the linearized equations of motion

I_ + J n e = - (K + w z + k z-)q)p+ k z Y•P P

• z2 )l'e - J n _0 = - (K + w z + k 8 - k z x
p p p o

mx =-k(x + ez )
o o p

(39)

- k(y ° -m_o = q) Z ) ,P

and a fifth decoupled equation

o.

mz =-kl zo o

B. SOLUTION

The solution of these linearized equations may be obtained quite

generally by taking Laplace transforms and solving for the roots of

the resulting characteristic equation. The fifth equation merely

states that the body is free to bounce up and down without affecting

any of the other motions (to first order). The other four indicate

a coupling between motions in the Xo,Y ° plane and rotations about

axes parallel to that plane•
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i. Non-Spinning

The non-spinning (n = O) case will be investigated first.

Note that for n = 0 the _'Yo equations are uncoupled from the

equations. In both sets the characteristic equation is

0_X o

where

2 2 2 _4(s 2 + WL)(S + _T ) = = 0

2 2 z 2 a4 2 , 2/_
_,_ _-- It Im. _T " + " " --L ......_ = (K + -, z k )/T; _ = Z _ / .....

P P P

The criterion for the solutions of this equation to be stable is

that _4 must lie in the interval

2 2 _4 2 2 2
4 eL _0T > 4 > = (0_L - _T) .

Since _4 is positive definite

2 2 _4
eL _T >

which implies that

K+w z >0 ,
P

for static stability. This could have been introduced intuitively

since it merely states that any diverging moment due to the weight

(Zp negative) must be offset by the magnetic restoring torque

The non-spinning characteristic equation can be written

(s2 + o12)(s2 + _2) = 0 ,

where a I and a 2 are the roots. It is interesting to note that these
2

roots always bracket those for _ = 0 == i.e., O 2 is greater than both
2 2 2

eL and _T' and o I is less than both _ and _ -= for all values

of _4 in the stable region.
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2. Spinning

The equations of motion of the spinning body after Laplace

transforming are

(s 2 + _) + _s 0 - kz /I
T P

- (Is (s2 + _) + kz /I 0
P

0 Zp_ +(s 2 + _) 0

2

- ZpW L 0 0 +(s2+ _)

@

X

Y

= 0 (40)

where _ = Jn/l.

The ratio of the linear to angular motion in one plane can be

formed

2

X Zp_L Y

@- 2 2 =

s + e L

Thus at a particular natural frequency the angular and linear dis-

placements are either in phase or 180 ° out of phase and proportional.

This means that for a pure mode at natural frequency _ the body
n

in a plane appears to be rocking about some axis a distance

[ z,i
S = --(D

n

above the center of mass.

The relation between motion in the two planes is given by

s2 2 ]
2 2 2 2 2 _4 + °_TY I (s + +as -

_ as k z C°W) 2

p s + [oL

is 2 1I + _T (s 2 + 2)(s2 + 2) _ Cz2s 2

C_s k Zp _-2 + Lo2L
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where o I and _2 are again the roots to the non-spinning equation.

Note that the magnitude of the coupling between the planes increases

with the speed and that furthermore Y is 90 ° out of phase with 8o

Therefore in a particular mode the oscillation can be thought of as

an elliptical motion of some point in the body about the nominal axis

of symmetry.

If the point of interest is the intersection of the symmetry axis

and the top plane (origin in Fig. 15), then Lissijous patterns of this

point may be plotted for the various modes of operation. This has been

done in Fig. 19 for two distinct spin speeds and the support situatien

of Fig. 15. Figure 19A shows the four modes at n = 2.0 cp_ and Fig. 19B

shows them at n = 8.0 cps. The high eccentricity of the ellipses in_

dicates a rather weak coupling between the planes at these speeds°

The characteristics themselves are found by setting the determinant

in Eq. (40) equal to zero.

(s2 + a12)2 (s2 + c_22)2 + (£2 2 2 2s (s 2 + coL) = 0 ,

2
a fourth_order equation in s The values of m, I, J and the center

of mass location can be measured and the values of k, K and the

center of pressure location can be obtained from Fig. 17. For the

rotor of Fig. 15 typical frequencies and the x locations of the ro-

tation axes are: at n = 0, fl = f2 = 3.569 cps, x I = x 2 = -1.681 cm,

f3 = f4 = 8.713 cps, x 3 = x 4 = 2.116 cm; at n = 2.0 cps, fl = 3.405 cps,

x I = -1.469 cm, f2 = 3.722 cps, x 2 = -1.921 cm, f3 = 8.224 cps,

x 3 = 2.297 cm, f4 = 9.279 cps, x 4 = I°964 cm.

The dynamic stability at various spin speeds can be inferred from

plot of the locus of roots of the characteristic equation with n as

the gain, Fig. 20 . Such a plot implies that all speeds are stable if

_L lies in the interval Sl < _L < a2' but it has been shown above

that _i and _2 always bracket _L if K + wz > 0. Therefore theP

only condition for dynamic stability in this case is that the body must

be statically stable.

Plots of calculated values of the four natural frequencies are shown

vs. spin speed, in Fig. 35.
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FIG. 20. ROOT IX)CUS DIAGRAM OF SPINNING CHARACTERISTIC EQUATION
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VI. INSTRUMENTATION OF POSITION

A. SPECIFICATIONS

The great advantage of superconductive magnetic support is the

minimization of frictional forces. If one wishes to monitor the posi-

tion of a body without losing the benefits of this sort of support,

the instrumentation should not add any additional friction. Further-

more, if one is interested in the effect of the magnetic forces alone,

then the non-frictional forces introduced by the instrumentation should

be very small compared to those of interest. The body of Fig. 15 has

a mass of approximately 20 grams so that net instrumentation forces

should be less than about 20 dynes if .1 percent deviations are to be

tolerated. It might be noted that the relativity experiment requires

stray forces on the sphere to be several orders of magnitude less than

this in order to be successful. Requirements for the cylinder, however,

are not as stringent.

A second consideration is sensitivity. The experiment on which

this project is based requires that angles less than one tenth second

of arc be measured. If this is to be done by measuring the relative

displacement of the ends of a body two centimeters long, the difference
-6

must be measured to l0 cm, a small fraction of the wavelength of

light. For the purposes of this preliminary experiment, the sensitivity
-3

requirements might well be relaxed to something in the order of l0 cm.

Nevertheless, it would be desirable to use a technique capable of the

more precise measurements. Inherently associated with the problem of

sensitivity are the related problems of repeatability and calibration.

Another problem to be considered is interference. In this experi-

ment dynamic motions are to be studied, so that the body must "be free

to move. Furthermore the effective spring constants of Fig. 17 indicate

that the support is so soft that only moderate disturbances may cause

excursions up to a millimeter. Thus the necessary pickoffs must not be

located so nearby that they severely confine the motion to be studied.
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B. THE CAPACITANCE BRIDGE

The requirements quoted above suggest three types of remote position

measuring methods: optical, inductance, (e.g., a Shaevitz differential

transformer) and capacitance. The last was chosen in this case because

it met the specifications and some critical components were easily

available. Reference 29 gives a general discussion of a capacitance

bridge with application to remote measurement of translation.

The principle of operation and circuit diagram for measurement of

the body of interest are shown in Fig. 21A. An AC signal is induced

on the body of interest through capacitor plate A. If the gaps at B

and C are equal then their capacitances are equal (assuming identical

geometry) and equal displacement currents flow across the gaps giving

no signal at the center-tapped transformer. When the body moves to the

right the gap at C decreases and the capacitance increases; whereas the

capacitance at B decreases. Thus more current flows across C, un-

balancing the bridge and giving a signal at the output. If the body

moves in the other direction the mechanism for the signal is the same,

but the phase of the output is now 90 ° on the other side of the input.

Thus by monitoring the phase it is possible to detect the direction as

well as the magnitude of the motion. If measurement of rotation is

desired then the scheme of Fig. 21B can be used. Note that in both

cases the body is eapacitively isolated so that no contact forces are

present.

The sensitivity of this arrangement is enhanced by the fact that

it operates about a null, i.e., there is no output when the body is

capacitively centered. The sensitivity close to null is given by

dv K L_ 2 eA/d 2

d-_= - 2 2 V(i + Le Z/d) 2 '

where K is the turns ratio of the transformer; L is the inductance

of half the transformer; _ is the frequency of the signal; A is

the area of the capacitor plates (assuming both are equal); d is the

distance between the body and one plate at null; and V is the potential
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of the body with respect to the center tap. Picking nominal values

one may estimate the sensitivity: Let K = l, L = 50 henrys,
2

= 5 kc, 6 = c , A = 1 cm , d = 1 mm, V = lO volts@ This gives
o

approximately 880 mv/mm. Thus, if one is able to measure changes of

i0 my the required sensitivity is achieved. Furthermore the nominal

gap, d, is a measure of the interference and in this case is not

restrictively small.

The force between one capacitor plate and the body is given by

-* j_ D 2 -*F= _dS

-3
For the values above, F = 4.4 X i0 dynes which is less than one

millionth the weight. Even though this force is quite small, it need

not be tolerated for the electric forces on each end tend to cancel

one another and the net force is proportional to x/d, the deviation

from null. The input capacitor plate (A in Fig. 21) also exerts an

electric force, but this can be minimized by making it annular or in

some other symmetrical shape.

The value of the capacitances are in the order of picofards so

that currents are in the order of microamps or less. Thus only low-

power power supplies are needed to operate the system, and the sur-

face currents flowing from one capacitor plate to another are not so

high that they might exceed the critical current of the superconductor.

An advantage inherent to this system is its electrical and me-

chanical simplicity. The capacitor plates need only be conducting

planes on some insulator and can therefore be plated, painted, evaporated,

etc. onto any regular or irregular shape. Once fixed into place they

can be made dimensionally stable by using a rigid support. Electrically

the system is also quite simple; it involves no active elements and

has only one critical component, the transformer. Shielding is neces-

sary to reduce the 60 cycle noise and this in turn introduces some

stray capacitance, but changes in the stray capacitance don't effect

the calibration. At the point that the capacitances are equal, the
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signal may not be zero because there is also a resistance bridge in

parallel with the plates. This, however, can be bias_Gout. The out-

put signal can be recorded after being demodulated by a phase sensitive

detector (e.g., Varo Model 1802, an all passive unit).

A possible scheme for instrumenting the body of Fig. 18 is as

follows: The input capacitor is an annular ring facing the sloping

lifting surface as shown in Fig. 22. The output plates for vertical

mo÷_o_.,v_ .. _.o_ disks above .._ h i ...._ _^,^_..... e ...... e _u_u_. The _uw__...........u_=a will not

be affected by horizontal translation and tilting if the difference

between the rotor and disk diameters is large compared to the disk-

rotor gap.

Horizontal motion of point A in Fig. 22 is detected by a pair of

plates on either side of the rotor as shown. These are segments of

a concentric cylinder whose diameter is slightly larger than that of

the rotor. A similar pair of plates detects motion into the paper as

shown in the section view. None of these plates will be influenced by

vertical translation if the distance between the cylinder base and lower

plate edge is large compared to the plate-rotor gap. Rotations about

point A will not be detected because they will cause identical capaci-

tance changes at the two plates.

Finally, rotations about a horizontal axis into the paper are de-

tected by the pair of plates at the top made from segments of a ring.

These plates are not affected by horizontal translation if their dia_

meter is sufficiently smaller than that of the top edge.

Calibration of this arrangement can be accomplished by holding the

rotor in a jig which is designed to perform the desired displacements.

The vertical location of point A can be found by rotating about various

axes until no signal at the output is obtained. Chapter VIII, Section

A discusses the method actually used for vertical calibration.
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VII. EXPERIMENTAL APPARATUS AND TECHNIQUES

A. GENERAL
t

The basic problem of studying a magnetically supported, superconducting

body can be divided into several specific problem areas. The first is

to obtain a low temperature environment for actually performing the

experiment. The second is to design and construct a rotor on whose

surface there is a superconductor having - _" ..... I__u_i_,t_±y high cri _''

field. The third task is to provide a properly shaped magnetic field

for supporting the rotor. Fourth is to spin the levitated rotor to the

speed desired. Associated with this is the problem of encountering

resonance or unstable spin speeds. Fifth is to provide low friction

surroundings in which the body may operate. Finally there is the

problem of reading out and recording the motions of the spinning body.

The first problem in experimentally verifying the theoretical re-

sults that have been presented so far is to achieve the low temperatures

necessary for superconductivity. For the engineer unfamiliar with low

temperature operations this seems like a very difficult task, but the

solution is really quite straightforward. The portion of the apparatus

containing the items to be superconducting is immersed in liquid helium,

a commercially available product. The atmospheric boiling point of

helium is 4.2°K and the temperature can be readily lowered to about

2°K by reducing the vapor pressure over the bath. The container of

liquid helium is itself within one of liquid nitrogen. Figure 23 shows

diagramatically the general arrangement of the experimental apparatus,

and a photo of the working system is shown in Fig. 24.

The actual experiment is carried out within the glass cryostat

blown from 51 mm Pyrex tubing of overall length 36 inches. A photo

of the unpainted cryostat is shown in Fig. 25, and the various details

are discussed in subsequent subsections.

The rotor is hollow and is made of 6061 aluminum; Fig. 26 shows

machine drawings of its two parts. The cap is shrunk into the recess

and then machined off and polished to form a continuous surface. The

demarcation between the two pieces cannot be seen under a microscope,
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F I G .  24. PHOTOGRAPH OF WORKING APPARATUS 
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FIG. 25. PHOTOGRAPH OF CRYOSTAT 
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indicating that the two have actually flowed into one another. The

polished rotor was chemically cleaned, zinc coated by immersion, dipped

in copper strike, and lead plated in a bath of Pb(BF4)2 (lead-

fluoborate) as discussed inRef. 30 to a thickness of .003-.005 inches.

The surface was sprayed with Krylon Crystal Clear to minimize oxidation.

The finished weight was 23.561 grams. The location of the center of

mass was determined by balancing the body on a knife edge with the axis

horizontal and the distance from the knife edge to the plane of the

rotor top was measured with an optical comparitor as _ = 1.236 + .015 cm.

The transverse and polar moments of inertia were determined by compar-

ing the period in a torsion pendulum to that of a known standard and

to that of the empty pendulum. The transverse moment was I = 60.55

2 2
+ .17 gr-cm and the polar moment was J = 41.475 + .030 gr-cm . No

attempt was made to mass balance the completed rotor.

B. FIELD GENERATION

The magnetic field for lifting the rotor is produced by a coil

wound directly on the recess of the glass cryostat (Figs. 23, 25).

The coil consists of 200 turns of .007" diameter double silk wrapped

niobium wire. An outline of the cross section determined by optical

comparitor tracings before and after winding is shown in Fig. 15. The

coil is able to remain superconducting while carrying ten amperes.

When the desired current has been established it is trapped in a super-

conducting loop by the circuit of Fig. 27 using the following procedure:

With the heater switch B open, the switch A is closed. Since the

resistance of the short and coil are the same (zero), the distribution

of current is determined by the inductance and most of the current

flows in the short. The switch B is then closed heating the short and

making it locally normal; current flows into the coil because it still

has zero resistance. The heater is turned off and the short allowed

to cool. Now there is a certain amount of flux trapped inside a super-

conducting loop so that when switch A is opened a persistent current

will flow to maintain the flux constant. During actual experiments a
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magnetometer probe was located at the outside of the nitrogen dewar

so that the operation of the flux trapping circuit could be observed.

The heater is made by wrapping .003" diameter nichrome wire around

the niobium and then potting everything inside two concentric stain-

less tubes which are soldered at their ends. This thermal insulation

minimizes the heat input to the bath. Approximately i00 milliwatts

activates the heater in about one second and it takes 2-3 seconds to

cool.

C. SPIN-UP SYSTEM

The system used to spin the magnetically supported rotor is similar

in principle to the one used at JPL to operate their gyro: it con-

sists of gas jets impinging on the periphery of the body.

The diagram of Fig. 23 shows the system. Helium gas is fed down

a long tube to the jet reservoir in the double walled lower section

of the glass cryostat (below the top coil). The inner wall has .020"

diameter holes, impact ground, at such an angle that their axes are

tangential to the circumference of the body. When the vacuum pump is

applied to the main chamber of the cryostat the gas is drawn from the

reservoir through the jet holes striking the rotor tangentially and

spinning it with an acceleration of .4-.8 cps/minute indicating a

torque in the order of 2 dyne-cm.

One problem is that the gas impinging on the rotor must be no

warmer than about 5°K or the surface may become normal. This limits

the volume flow of gas and the torque on the body, for the slow move-

ment through the large diameter sections is relied upon for cooling

the incoming gas. Attempts to increase the flow to provide more torque

have consistently resulted in the rotor falling down. If necessary,

higher flows and torques could be achieved by installing a helium

temperature heat exchanger (e.g., a coil of copper tubing), but the

present levels have proved adequate.
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Early experiments used helium gas from an external cylinder to

feed the jets, but this proved to be too impure as evidenced by great

amounts of condensate in the jet reservoir. Since very pure helium

could be drawn from the boiling bath, another tube was run down to

collect it and was connected at the top through a rubber hose and

metering valve to the gas jet feed (Fig. 23).

D. LOW FRICTION ENVIRONMENT

After the body has been spun to the desired speed it is necessary

to remove the surrounding gas to minimize the friction. To do this

the jet stop cock of Fig. 23 is closed and the vacuum pump allowed

to pump out the chamber. Since the jet reservoir would have to be

pumped through its small holes and therefore take a very long time,

a cross feed stopcock was located at the top so that the pump may

work on both sides of the jets simultaneously. The pressure as meas-

ured between the top of the cryostat and the pump (about two feet away)
-5

reaches about 5 X l0 torr in about five minutes.

Unfortunately the removal of gas and reduction of friction intro-

duces a problem of heat transfer. Light falling on the rotor when

measuring speed with a strobe, or just looking at it, tends to heat

the rotor and causes it to become normal. When sufficient gas is

present the heat is carried off by conduction to the surrounding walls;

but removal of the gas eliminates this heat transfer mechanism.

To minimize the thermal radiation falling on the rotor, four radia-

tion baffles are built into the cryostat (Fig. 25). Furthermore, the

exterior of the glass is painted flat black from the coil to the top

baffle so that the rotor can only be seen from the bottom. The strobe

light is filtered with a band pass filter of about l0 mu in the green

to cut down unnecessary radiation. Even with these precautions the
=5

body will stay up for only about 30 minutes at l0 torr. Some

heating may be due to hot pump oil migrating into the system and con-

densing on the rotor, although most of it should be stopped by the

helium-cooled baffles.
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E. SECONDCOIL ANDRESONANCEPROBLEMS

During early experiments it was found that when the rotor spin

speed reached the first natural oscillation frequency small imbalances

would cause lateral oscillations to grow until the rotor hit the sides

of the surrounding glass. It seemed that no manner of operation of

the jets or support could get it through this speed.

After an extensive computer study it was found that addition of

a 2.7 am radius coil 1.5 cm below the first (Fig. 23) helped solve

the problem in the following way; If the body was first levitated

using only the main (upper) coil it was found, theoretically and

experimentally, to have a certain first natural frequency and critical

speed. If now the second coil was turned on and the current in the

first lowered such that the current in both were equal but the force

on the body unchanged, then the body was observed to have a first

natural frequency as much as 40 percent below that of a single coil.

Thus the first critical speed was considerably lower in the two-coil

case than in the one coil.

It was then possible to spin the body in the following manner:

With one coil on, the body was spun to its maximum possible speed just

below the critical. The currents in both coils were then suddenly

altered to the configuration described above so that the body was

spinning above the critical speed for this situation. It then could

be spun on up.

During the transition from one- to two-coil support it was neces-

sary to provide some damping of the lateral oscillations. When the

body moves from side to side it changes the magnetic field in its

vicinity so that if a lossy medium were present there would be eddy

current dissipation which would remove kinetic energy from the oscil-

lating body. Harding [Refs. 31, 32] has made some calculations on

using a spherical lossy shield to damp the motions of a sphere and

his analysis can be extended to a cylinder. Making some very rough

approximations it was found that damping could be accomplished by

installing a surrounding cylinder of 1/16" thick copper. A photo

of the cryostat with the damper in place is shown in Fig. 28.

-94-



I 

F I G .  28. PHOTOGRAPH OF CRYOSTAT WITH DAMPER 
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Presumably this trick of changing support can be applied at every
critical speed encountered as long as it is a resonance problem and

not one of inherent instability.

F. CAPACITIVE PICKOFF

An instrumentation arrangement like that discussed in Chapter VI

was incorporated into the glass cryostat for monitoring motions in

two horizontal directions. The carrier signal is fed capacitively to

the rotor through an annular plate on the sloping glass surface above

the top coil. The two capacitor pairs are made from plates approxi-

mately one centimeter square on the outside of the inner tube at the

bottom of the cryostat (Figs. 23, 29).

The plates themselves are made from Du Pont Silver Preparation,

Electronic Grade, No. 7713. This is a suspension of finely powdered

silver and glass in an organic binder which is painted directly on a

glass surface and fired. During the firing the binder evaporates and

the powdered glass fuses to the glass beneath leaving a layer of con-

ducting silver fused to the top. For the input capacitor plate,

electrical connection to the exterior is made by painting a strip

from the capacitor plate to the back of a tungsten pin sealed into

the glass. At the output plates, four tungsten ribbons with platinum

spots welded on the ends press against the silvered surface. At the

other end they are spot welded to the pins of a standard NRC vacuum

gauge base sealed to the bottom of the cryostat.

This arrangement actually measures the motion of some point in

the rotor whose elevation is approximately at the center of the plates.

Thus if the rotor oscillates about an axis which does not pass through

this point (Chapter V), the plates will detect its motion.

The 5 kc signal is provided by an Hewlett-Packard Model 400B audio

oscillator at 150 volts RMS. The transformers and amplifier-demodulators

were built by Autonetics and supplied by Messrs. Joe Boltinghouse and

Doyle Wilcox of that company. The transformers are mounted near the

top of the cryostat where their temperature will not fall below 0°C.
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It was found that reducing their temperature much below this level

resulted in a marked change in the magnetic properties of the core

and a consequent loss in performance. The output is amplified, de-

modulated and fed to a Sanborn pen recorder as shown in Fig. 30.
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VIII. EXPERIMENTAL RESULTS

A. CURRENT VERSUS HEIGHT MEASUREMENTS

As discussed in Chapter IV the body should stand at a certain

elevation dependent on the current in the levitation coils. To

check this a separate apparatus was constructed using capacitor

plates above and below the rotor. Calibration was accomplished by

lifting the body with a string attached to a micrometer and noting

the capacitive output. The experiment was carried out in liquid

helium sothe buoyancy force (about 3000 dynes) had to be subtracted

for the calculations. The results are shown in Fig. 16A.

B. SPIN DOWN TESTS

Before the capacitor plates were installed a number of spin down

tests were made. The rotor was spun to 13.6 cps (where another

critical speed occurred) using the method outlined in Chapter VII,

Section E. The jets were shut off, the cavity pumped out, and the

body allowed to spin down. The speed was measured with a Strobotac.

Because of the heat transfer problems mentioned in Chapter VII,

-3
Section D, the pressure was only reduced to I0 tort.

Figure 31 is a semilog plot of speed versus time at two pressures.

The mean free path at 80_ is approximately .002 cm which means the

body is in continuum flow. (Since the viscosity is independent of

pressure the drag should be the same throughout the continuum flow

regime.) The spin down time constant (time for speed to decrease by

l/e) is 120 minutes. At I_ the mean free path is approximately

2 mm which is about the width of the gap between the body and the

wall; thus the body is in the transition between continuum and free

molecular flow. The spin down time constant is 126 minutes which

shows the trend toward lower drag as the free molecular regime is

entered.
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When the capacitor plates were installed the rotor was replated

because at one point on its surface the lead was chipped off from

handling. Apparently the new plate was somewhat non-uniform, for

the body would no longer turn about its axis of symmetry as noted

by the capacitive pickoff. Consequently as the body spun it changed

the magnetic field around it so that the copper damper along with

the residual gas removed energy from the spin.

Because of the non-symmetry of the spin axis it was possible to

read the speed from the traces on the pen recording. A plot of speed

versus time with the mechanical pump operating is shown in Fig. 32.

The right side of the curve seems to be leveling out indicating that

the gas friction is going into the free molecular flow regime, as it

should around the low pressure limit of the fore pump. The exponential

time constant is approximately 40 minutes.

C. VIBRATION FREQUENCIES

After installation of the capacitor plates it was possible to

record lateral motion of a point in the rotor. A typical plot of

motions versus time is given in Fig. 33A. Note that two distinct

frequencies are present: The low-frequency component is that due to

the rotation about a non-body axis as discussed in Chapter V, Section

B, and the high-frequency component is motion at one of the natural

frequencies, induced by tapping the structure. The components of the

low-frequency mo_ion in the two planes are, of course, 90° out of

phase.

At some particular spin speeds a unique means of observing natural

frequencies presented itself. A multiple of the spin speed would

beat with one of the natural frequencies, and this beating was very

apparent on the trace (Fig. 33B). Measurement of the beat frequency

5 gave the difference (n2 - _) where 2 is the spin speed and

is the natural frequency of interest. The spin speed was obtained

by measuring it at various points near the beat and fairing in a curve

to determine it right at the beat.

-102-



¢)

b_

L_ O

v

¢)

0

c_
'-4

0

O

_D

-- 0

q_

0

0

L_
,.-I

z

I--4

r.T.1

c_
cO

-103-



_I:_ !I!_ _i _¸

!!iilii_,,_il•

!I!!!_:::,=:: c
!!_!li:S_.....!!i

II

0

E

c-
O

0

@ i ,-__ __ e

??:

_5

:"_, it! !i:

!_,otu SseM- J,SD3

iTr__ }i!':

' !

--_r--

i._

I_ 17:17

LSa

_-_ o X _UO[J,OUJ

qsnos - q_,J0N

O

eu <I
E_

!::i

o
(u
(/1

i
7

_u m
EP_

- q_JON

I=

I--(

F_

1'-4

E_
O

I--4

I,-4

O9

O
_-q r,rJ

O_

_ m

_4

-104-



Natural frequencies were calculated and measured for two distinct

support currents. The calculated and experimental values are shown

in Figs. 34 and 35 for 3.14 and 4.10 amp currents respectively. Note

that the frequencies measured seem to correspond quite closely to the

third mode. The lines n = f, 3n = f, and 4n = f, where n and

f are the spin and oscillation speeds respectively, have been drawn

on the frequency plots. The points at which the lines 3n = f and

4n = f intersect the theoretical frequency versus speed curves are

points of expected harmonic resonance; i.e., where the beating of

Fig. 33B should occur. Beating in the third mode did occur near these

points_ no fourth mode beating, however, could be recognized.

Measurement of the first and second mode frequencies (which are

quite close over the whole range of speeds) was hampered by the fact

that the copper shield was designed for maximum damping just at these

frequencies. Some frequency data in this mode was obtained, but it

could not be averaged over a large number of cycles and is therefore

somewhat less accurate than that for the higher mode° The best check

of the fundamental frequency comes from the maximum speed measurement

where n equals f and excitation of the natural mode by the spin

speed caused the rotor to hit the surrounding wall.
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IX. CONCLUSIONS AND SUGGESTIONS FOR FURTHER STUDY

A. CONCLUSIONS

The frequency data presented in Chapter VIII seems definitely to

confirm the magnetic force calculations of the previous chapters.

Thus, there has been developed here a reliable model for a magnetically-

supported, superconducting, spinning body.

Unfortunately some limitations have been encountered which pre-

clude more extensive measurements. Most discouraging are the rather

low spin speeds which have been achieved due to rotor imbalances and

uncertain superconducting properties of the lead. The first difficulty

can most likely be overcome by the scheme outlined in Chapter VII,

Section E; the second is discussed below.

The instrumentation of the spinning rotor has been rather in-

complete in that only two of the five interesting degrees of freedom

have been adequately monitored. This has been sufficient to measure

frequencies but insufficient to really see the coupled rotation-

translation discussed in Chapter V, Section B. The complete instru-

mentation setup shown in Fig. 22 would adequately measure the desired

motions but would be difficult to install in the present cryostat.

One of the major problems associated with installation of additional

instrumentation is that it would inhibit the flow of gas from around

the rotor during the evacuation phase of the operation and possibly

cause excessive pump down times.

Despite these limitations, this thesis presents quantitative tools

for designing magnetically-supported, axially symmetric superconducting

bodies to be operated in nominally axially symmetric fields. A design

procedure using these tools is as follows: Select a body and field

generator shape as determined by the geometrical constraints of the

particular problem. Using the methods presented, calculate the fields,

forces, characteristics, and stability regimes. Modify the currents,

field generator or body shape to produce the desired dynamic behavior.
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The small deviations between the experimental and theoretical

values in the present study are probably due to the computer slightly

misrepresenting the field of the undisturbed coil, and to numerical

errors associated with manipulating the large influence-coefficient

matrices.

B. FURTHER STUDY

Several possible extensions and modifications of the work to date

suggest themselves. In the field calculation programs there are in-

herent inaccuracies in working with large matrices. The matrix in-

_rsion program of Appendix A should be replaced by one using iterative

improvement, and the matrix multiplications should be carried out in

double precision arithmetic. Furthermore, all the programs can be

speeded up by various modifications. The subroutine COILFD in Appendix

B calculates the field of a plane circular loop. This should be re-

placed by one which calculates the actual field of the generator of

interest, e.g., a coil of square cross section. Furthermore, simply

by modifying COILFD the effect of any axially-symmetric field can be

calculated.

The tools are now available for optimization of the body-coil

system. Using the present methods of calculation, it should be

possible to write computer programs which will change the various

parameters to converge on a design meeting the selected criterion of

optimality.

The field calculations might be checked by direct experiment by

attaching measuring devices (e.g., magneto-resistive bismuth probes)

directly to the surface of the body of interest. Also, static measure-

ments of the restoring forces could be made as in [Ref. 7].

As mentioned above the superconductive properties of the lead

plating are somewhat in doubt. Experiments could be performed which

test such items as flux trapping and critical field of a plated speci-

men. Magnetization tests on lead plated samples could easily be run

using an oppositely wound coil system like that discussed in Refs. i0
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and ii. Little information is readily available on the superconducting

properties of "thick" films prepared by various processes; this sort of

test would help considerably. Some work along this line has been

performed using a lead plated superconducting microwave cavity [Ref. 33].

Some of the items cited in Chapter I, Section B may now be pur-

sued with the quantitative tools given here. In Ref° 5, for example,

Buchhold qualitatively suggests some designs for magnetic bearings.

In a separate inertial guidance application, Cannon [Ref. 34], in an

analysis of a pair of reaction wheels storing momentum in opposite

directions, suggests a means for transferring momentum from one wheel

to the other with a minimum of energy loss. If all parts of his

arrangement were magnetically supported, the problem of bearing friction

would be minimized.

Finally, these results can be applied to the development of the

Mossbauer readout method introduced in Chapter II. A body to carry

the _6ssbauer absorber can be designed and built using the procedure

outlined above and the parameters necessary for controlling its

behavior are available from this analysis. The design and demonstra-

tion of a system for controlling precisely the position and orienta-

tion of the spinning cylinder, by means of capacitive pickoff and

feedback to the magnetic support coils, still represents a significant

challenge.
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APPENDIX A. INFLUENCE COEFFICIENT PROGRAM AND SUBROUTINES

C ICISA INFLUENCE COEFFICIENT INTEGRATION,SYMMETRICpASSYMMETRIC
C EXPANDED INTEGRATION PROCEDURE AS PER DOUGLAS REPORT ES 26988

DIMENSION X(lI1},Y(Ill)_GRAN1(65),GRAN2(65)

DIMENSION VT(110,110)oVNI(110,110)
COMMON VNI,GRAN1,GRAN2

1 FORMAT (6F12.5)
2 FORMAT (16H X INFLUENCE AT 2F6.S,23H DUE TO ELEMENT NUMBER 139E18.

C6)
3 FORMAT (16H Y INFLUENCE AT 2F6.St23H DUE TO EIEMENT NUMBER 13,E18.

C6}

4 FORMAT (24H THE MATRIX !S SINGULAR !2)

5 FORMAT {14}
6 FORMAT (72HOPROBLEM COMPLETED,MATRICES WRITTEN ON TAPE 12 AS VNIS

C,VTSpVNIAtVTA FOR IStlSH DESCRIBING PTS)
7 FORMAT (37HOMATRIX HAS BEEN SUCCESFULLY INVERTED)

11 READ INPUT TAPE 5,5,NUM

C NUM IS THE NUMBER OF DESCRIBING PTS, IT MUST BE ODD AND LESS T 102
C BOUNDARY CONDITIONS ARE MET BETWEEN EACH OF T_ESE POINTS

NUP=NUM-I

READ INPUT TAPE 5,1,(X(1),I=loNUM)
READ INPUT TAPE 5,1,(Y(1),I=I,NUM)

LOFST=I
C LOFST IS PROBLEM CONTROL,LOFST-I FOR SYMMETRICtLOFST=2 FOR ASSYMMETRIC

52 DO 17 I=Z,NUP
DELTS=SQRTF((XII+I)-X(II)_2.+(Y(I+II-Y(1))_2.)

SINB=(Y(I+I)-Y(1)I/DELTS

COSB=(X(I+I)-X(1))/DELTS
XMDPT=(X(I+II+X|I)}/2.

YMDPT=(Y(I+I)+Y(1)}/2o

C THESE ARE THE PTS AT WHICH WE ARE FINDING THE INFLUENCE
DO 17 J=I,NUP

AREAI=O.O
AREA2=O.O

DELTS=SQRTF((X(J+I)-X(J|)_2.+(Y(J+I)-Y(JI)_e2.)

IF(I-J) 9,19,9
9 DI=SQRTF((XMDPT-X(J))_2.+(YMDPT-Y(J))_2.)

D2=SQRTF[(XMDPT-X(J+I)}_2,+(YMDPT-Y(J+I|I_2a)

IF(D2-D1} 12, 12,10
i0 D2=D1

12 CONTINUE
C D2 IS THE SHORTEST DISTANCE TO INTEGRATING ELEMENT

INTRV=8._DELTS/D2
IF(INTRV) 13, 13,14

13 INTRV=I
14 IF(S2-1NTRV) 1S, 15,18
15 INTRV=S2
18 INTRV=2_INTRV

TRV=INTRV
C INTRV=NUMBER OF INTEGRATING PTS, IT IS EVEN ,BETWEEN 2 AND 6_

H=DELTS/TRV
NTRV=INTRV+I
DO 16 N=I,NTRV
EN-N-1
XI=X(J)+EN*(X(J+I)-X(J})/TRV
ETA=Y(J]+EN_(Y(J+I)-Y[Jtt/TRV
CALL INTEGR (XMDPT,YMDPT,XI,ETAtkOFST,NIGRANI(N),GRAN2(N))

16 CONTINUE
CALL SIMP(GRAN1,H,INTRV,AREA1)
CALL SIMP(GRAN2,H,INTRV,AREA2)
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GO TO (43o44)oLOFST
44 AREAI=2._AREA1

AREA2=2,_AREA2
GO TO 26

43 AREAI=(-4,)_AREA1
AREA2=(-2,)_AREA2

GO TO 26
19 SPRIM=,08

IF(DELTS-2,_SPRIM_YMDPT) 22t 22t23
22 SPRIM=eS_DELTS/YMDPT

GO TO 37
THE INTEGRAL IS REPRESENTED BY THE

23 INTRV=8e-16,tSPRIM_YMDPT/DELTS
IF(INTRV) 249 24125

24 INTRV=I
25 INTRV=2_INTRV

INTRV IS THE NUMBER OF SUBELEMENTS
TRV=INTRV
H=(eS_DELTS-SPRIM_YMDPT)/TRV
NTRV=2_INTRV+2
MAXIMUM NTRV IS 34 WHICH DOESNT
DO 31N=ltNTRV
EN=N-1
IF(N-(INTRV+l))27t27,28

27 XI=X(I}+ EN _H _COSB
ETA=Y(I)+ EN _H _SINB
GO TO 20

SERIES

BEFORE

EXCEED

ONLY

THE SINGULAR SUB ELEMENT

DIMENS20N OF GRANS

28 XI=X(I+lt+((EN-1.)/TRV-2o)_COSB_H_TRV

ETA=Y(I+I)+((EN-1.)/TRV-2.)_SINB_H_TRV
20 CALL INTEGR (XMDPT,YMDPTtXItETAtLOFSToNtGRANI(N)tGRAN2(N)}
29 IF{N-(INTRV+1))31930t31

30 CALL SIMP(GRANltHtINTRVtAREA1)
CALL SIMP(GRAN2tHoINTRVtAREA2)

31 CONTINUE
NTRV=INTRV+I

DO 36 L=ltNTRV

LL=L+INTRV+I
GRANI(L}=GRANI(LL)

36 GRAN2(LI=GRAN2(LL)
WE HAVE SHIFTED THE .GRANS SO WE MAY NOW INTEGRATE BY SIMP
CALL SIMP(GRANI_HtINTRVtAREAll)
CALL SIMP(GRAN2oHtINTRVIAREA22)

AREAl=AREAl÷AREAl1
AREA2=AREA2+AREA22

ADDS THE TWO INTEGRALS
GO TO (45t46)_LOFST

46 AREAI=2,_AREA1
AREA2=2._AREA2
GO TO 37

45 AREAI=(-4eI_AREA1
AREA2=(-2oI_AREA2

37 GOR=LOGF(,125_SPRIMI
GO TO (47t48)tLOFST

48 XII=2°_SINB_COSB_SPRIM_(1.-SPRIM_SPRIM_(9.-2.eSINB_SINB+6._GOR)/

C 48°)
YII=2,_SPRIM_(2,+SINB_SINB+GOR+SPRiM_SPRIM_lg,-43,_SINB_SINB+6ew

C SINB_4°+(27,-24,_SINBmSINB)_GOR)/144,)
GO TO 49

47 XII=SINB_COSB_(2,_SPRIM+(13°/72.+(GOR+SINB_SI_iB|/12oI_SPRIN_3e}

YII=2.*SPRIM*(SINB*SINB+GOR}-SPRIM**3,*(3,+3,_IGOR-SINB_SINBI-2_*
CSINB**4.)/24.
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49 AREAI=XII+AREAI
AREA2=YII+AREA2

ADDS IN SERIES

NOTE THAT X(I,I)=O IF BETA=O AND I IS WELL
26 CONTINUE

VT(I,J)=COSB*AREAI+SINB*AREA2

VNI(ItJ)=COSB*AREA2-SINB*AREAI
IFII-J)17,32,17

32 VNIII,J)=VNIII,J)-6,28318
17 CONTINUE

CALL INVERT (VNI_NUP,MI)
IF (M1) 53,53_34

34 WRITE OUTPUT TAPE 6o4PM1

GO TO 35
53 WRITE vu,rv,........TAPE 6,7

35 CONTINUE

WRITE TAPE 12,((VNI(I_J)tJ=I,NUPI,I-1,NUR)

WRITE TAPE 12,l(VT (IoJI,J=IgNUPItI=IoNUP)
GO TO (50t51)_LOFST

50 LOFST=2

GO TO 52

51 END FILE 12
CALL RWD

WRITE OUTPUT TAPE 6_6oNUP
GO TO 11

END

OFF THE AXIS

INV SUBROUTINE TO INVERT A MATRIX

SUBROUTINE INVERT(AtIMAXtISING)

DIMENSION A(110_IlO),GRANI(65),GRAN2(65)_IN(I_O)tTEMP(110)
COMMON A ,GRAN1,GRAN2
ISING=O

N=IMAX
IMAXO=N-1

Ii=l

1 13=If
IN(II)=O

SUM=ABSF(A(II_I1))
DO3I=II,N

IF(SUM-ABSFIA(I,II)))2,3t3
2 13=I

IN(I1)=I

SUM=ABSF(A(I,II)}
3 CONTINUE

IF(13-Ii)4o6o4
4 DOSJ=19N

SUM=AiIItJ)

A(II,J)=A(13,J)
5 A(13,JI=SUM

6 13=11+1

IF(A(II,I1))97t99997
97 DO71=I3_N

? A(I,II)=A(ItIII/A(II,II)
J2=11-1

IF(J2)8_11,8
8 DOgJ=I3,N

DO91=I,J2

9 A(IltJ)=A(I19J)-A(I1_I)_A(ItJ)
11J2=I1

11=11+1

DOI21=I1oN

HINTO001

HINTO002

HINTO004
HINTOO05

HINTOO06

HINTOO07
HINTOO08

HINTO009
HINTO010
HINTO011

HINTO012

HINTO013
HINTO014

HINTO015

HINTO016
HINTO01?

HINTO018

HINTO01?
HINTO020

HINTO021

HINTO022

HINTO023
HINTO024

HINTO025
HINTO026

HINTO027
HINTO028

HINTO029
HINTO030

HINTO031
HINTO032

HINTO033
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DO12J=IPJ2
12 A(IgI1)=A(I_I1)-A(IoJ)_A(JJI1)

IF(I1-N)1914tl
14 OO6OOJP=ltN

J=N+I-JP
A(JtJl=leO/A(JtJ)
IF(J-1)6039700t603

603 DO6OOIP=2oJ
l=J+l-IP
IPO=I+l
SUM=O,

DO602L=IPO,J
602 SUM=SUM-A(I,L)_A(L,J)
600 A(ItJ)=SUM/A(IoI)
700 DO151J=loIMAXO

JPO=J+I
DO151I=JPOPN
SUM=O,
IMO=I-I
DO154L=JtIMO
IF(L-J)152_153_152

152 SUM=SUM-A(IgL)_A(LgJ}
GO T0154

153 SUM=SUM-A(ItL)
154 CONTINUE
151 A(ItJ}=SUM

O09011=IoN
oogooJ=loN
TEMP(J)=OoO
OO899K=IoN
IF(K-J}899_8979898

898 TEMP(J}=TEMP(J)+A(I,K)_A(KoJ)
GO T0899

897 TEMP(J)=TEMP(J)÷A(IoK)
899 CONTINUE
900 CONTINUE

DO9OIJ=I_N
901 A(IPJ)=TEMP(J)

DO5OOI=2oN
M=N+I-I

IF(IN(M))5029500_502
502 ISS=IN(M}

DOSO3L=ItN
SUM=A(LoISS}

A(LtISSI=A(L_M)

503 A(LtM)=SUM
500 CONTINUE

GO TO 805
99 ISING=I

805 RETURN

END

CRWD SUBROUTINE TO
FAP

ENTRY RWD

RWD RUN 1174
TRA lt4

END

REWIND AND UNLOAD TAPE

CSSRDB INTEGRATION BY SIMPSONS RULE GIVEN
SUBROUTINE SIMP(AoHtNtAREA)

12

INTEGRANDtINTERVALYNUM+ER

HINTO034
HINTO035
HINTO036
HINTO037
HINTO038
HINTO039
HINTO040
HINTO041
HINTO042
HINTO043
HINTO044
HINTO045
HINTO04.6
HINTO047
HINTOO4B
HZNTO049
HINTO050
HINTO051
HINTO052
HINTO053
HINTO054
HINTO055
HINTO056
HINTO057
HINTO058
HINTO059
HINTO060
HINTO061
HINTO062
HINTO063
HINTO064
HINTO065
HINTO066

HINTO067
HINTO068
HINTO069
HINTO070
HINTO071
HINTO072
HINTO073
HINTO074
HINTO075
HINTO076
HINTO077
HINTO078
HINTO079
HINTO080
HINTO081
HINTO082
HINTO083
8953 8
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C
C
C
C
C

DIMENSIONA(65) •
AREA=H_(A(1)+A(N+I})/3.
J=N-I
IF(J-I)B_B,g

8 AREA=H_(A(II+4._A(2)+A(3))/3.
GO TO 12

9 DO I0 I=3,J,2

10 AREA=AREA+2._H_A(1)/3.
DO 11 I=2,N,2

11 AREA=AREA+4._H_A(I}/3.
12 RETURN

END

INTE SUBROUTINE TO EVALUATE INTEGRANS

SUBROUTINE INTEGR (XMDPT,YMDPT*XIgETA,LOFST,N_RAN1,RAN2)

DIMENSION A(110,110),GRAN1(65)tGRAN2(65)
COMMON A ,GRAN1,GRAN2

20 DELT=XMDPT-XI

HOLDI=(YMDPT÷ETA)_2.+DELT_DELT
HOLD2=(YMDPT-ETA)_2.+DELT_DELT
ARG2=4,_ETA_YMDPT/HOLD1

HOLDI=SQRTF(HOLDI)

CALCULATION OF ELLIPTIC INTEGRALS,

METHOD USED IS THAT OF ALGOITHMS 55 + 56 (COMMUNICATIONS OF THE ACM,
APR 61). ALGORITHM 165 (COM OF THE ACM,APR 63| STATE THE ABOVE IS GOOD TO

SIX PLACESAND GIVES A SLIGHTLY MORE ACCURATE PROCEDURE, CERTIFICATION IS
IN THE SAME ISSUE WITH A CORRECTION OF ONE OF THE CONSTANTS.

T=I.-ARG2

ELLl={((,O32024666_T+.O54544409)_T+.OQY932891}_T+1,3862944)-
X(((-OlO944912_T+,O60118519)_T+.12475074)_T+oS)*LOGF(T)

ELL2=(((,O40905094_T+,OBSO99193)_T+.4447920_)_T+l.)-
X (((*01382999_T+.O8150226)_T+,24969795)WT)_LOGF(TI

GO TO (40,41),LOFST
41HOLD4=DELT_DELT+ETA_ETA

HOLDS=HOLD4-2,_ETA_ETA
HOLD3=HOLD4+YMDPT_YMDPT

RAN1 =DELT_(ELLI_HOLD3_ELL2/HOLD2}/(YMDPT_OLD1)
RAN2 =(-HOLD4_ELLI+ELL2_ (HOLD4WHOLD4+YMDPT_YMDPT_HOLDS)/

CHOLD2)/(YMDPT_YMDPT_HOLD1)
GO TO 42

40 RANI =ETA_DELT _ELL2/(HOLD2*HOLD1)

RAN2 =(ETA/(YMDPT_HOLD1))_(ELLI+ELL2_(YMDPTeYMDPT-ETA_ETA-
C DELT_DELT)/HOLD2)

42 RETURN

END
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APPENDIX B. AXIALLY SYMMETRIC PROGRAM AND SUBROUTINES

C RDB FIELD CALCULATION ON THE SURFACE OF A CYLINDRICALLY SYMETRIC BODY
C AXIAL SYMMETRIC BODY USING SUBROUTINE FOR FIELD COMPONENTS

C BOUNDARY CONDITIONS ARE MET BETWEEN EACH DESCRIBING POINT,
DIMENSION X(111)tY(111),VT(I10t110)tVNI(I10t110)

DIMENSION VNO(IIC)_VTO(IlO),Q(I10),B(110)

11 FORMAT (4F_0,4,14)
12 FORMAT {24H FIELD BY TABLE AND SUB 4F14,5)
13 FORMAT (28N MAXIMUM FIELD OCCURS AT PT 14,18H WITH COORDS X,Y" 2FI

XO,4,14H ITS VALUE IS F14,5)
14 FORMAT (26HOCOIL COORDS IN CM,XC,YC= 2FIO,4,22H CURRENT IN AMP-TUR

XNS FI0,4)

15 FORMAT 14)
16 FORMAT 20H NORMAL FIELD AT PT 14,F14,5)

17 FORMAT 5FI_,6)

18 FOR_'U_T 2_H CENTRAL FIELD IN GAUSS F14,5)
19 FORMAT 6012)

20 FORMAT 6F12,5)
21 FORMAT 3F12,5,12,14)
22 FORMAT(22H FIELD IN GAUSS AT PT 14,F14,5)
23 FORMAT (36H NET MAGNETIC LIFT FORCE IN GRAMS F14,5)

READ IMPUT TAPE 5,15,NUM
NUP=NUM-I

READ INPUT TAPE 5,20,(X(1),I-I,NUM)

READ INPUT TAPE 5,2O,(Y(1),I-1,NUM)
READ INPUT TAPE 5,11,FVMAX,rVMIN,FACT,CMINtITL

i0 READ TAPE 12,(IVNI(I,J),J=I,NUP},I =I,NUP)
READ TAPE 12,((VT (I,J),J=I,NUP}_I=I,NU p)

26 READ INPUT TAPE 5,21,YC,XC,AMP,LO,KOILN

C YC-COIL RADIUS IN CM, XC-X COIL COORD IN CM,AMP-CURRENT IN AMP-TURNS
C LO=OUTPUT CONTROL,LO=I GIVES FIELD DLSTRUBUTION,LOm2 GIVES FORCE ONLY

C KOILN=CQIL CONTROL,O'ONE COIL ONLY,I=FIRST COIL OF A SERIES

C 2=INTERMEDIATE COIL OF A SERIES,3=LAST COIL OF A SERIES

31AMP=AMP/IO,
WRITE OUTPUT TAPE 6,14,XC,YC,AMP

IF (KOILN-I) 32,32,34

32 DO 33 K=I,NUP
33 B(K)=O,O

.34 CONTINUE

BO=6,28318_AMP/YC
IF (LO-I) 3B,B7,3B

37 WRITE OUTPUT TAPE O,18_BO
38 CONTINUE

DO 56 K=I,NUP
XVDPT-(X(K+I)+X(K)_/2,

YMDPT=(Y(K_I)+Y(K)_/2,
HOLDI=SORTFi(X(K+I)-X(K))**2,+iY(K+I)-Y(K))**2,)

COSB=(X(K+I)-X(K))/HOLDI

SINB-(Y(K+I)-Y(K))/HOLD1
ZS=(XC-XMDPT)/YC

RHOS:YMDPT/YC
CALL COILFD(RH3S,ZS,BRHO,BZ}
BRHO=BRHOIBO

BZ'BZ*BO
VNO(_)-BRHO*CCS)+BZ*SINB
VTOiK)-BRHO*SINB-BZ*COSB

56 CONTINUE

DO 60 J=I,NUP

O(J)=O,O
DO 60 K'I,NUP

60 _(J)=Q(J}-VNI(J,K)_VNO(K)
DO 65 K=I,NUP
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C

C

7/*

79

81

C CFD

C

C

C

C

C

C
C

C

C
C

C

C
C

C

62 B(K)=VTO(K)÷B(K}

DO 64 JmltNUP

64 B(K)=B(K)+Q(J)*VT(KtJ)

65 CONTINUE

KOILN=KOILN+I

GO TO _72t26o26o72)oKOILN •

72 CONTINUE

FV=O.O

DO 66 N=ltNUP

AV=3.141fi9*iYiN)_Y(N)-Y(N+1)_YiN+l))

P=,125_B(N)_2,/3o14159

FV=P_AV+FV

GO TO (76o66)9L0

76 WRITE OUTPUT TAPE 6t22tNtB(N)

66 CONTINUE

FV=FV/981,

WRITE OUTPUT TAPE 6o23tFV
73 CONTINUE

BMAX=Bil)eB(1)

NMAX=2

DO 70 Km2tNUP

BMIN'B(K)eB(K)

IF (BMIN-BMAX) 70tTOt69

69 BMAX'BMIN

NMAXmK

70 CONTINUE

XNMAX=(X(NMAX+I}+X(NMAX))/2o

YNMAX=(YiNMAX+I)+Y(NMAXI)/2o

BMAXaSQRTF(BMAX)

WRITE OUTPUT TAPE 6o13oNMAXoXNMAXIYNMAXIBMAX

DERIVE IS ONLY CALLED IF KOILN-O OR 3o IE LAST OR ONLY COIL

ITL=DERIVE CONTROLoSEE SUBROUTINE

BC=450,
CCRITmAMP_SQRTF(FVMAX/FV)

CALL DERIVE (XCoYCtAMP,FV,BMAXtBC*ITLoFVMINoFVMAXoCMINtFACToCCRIT)

GO TO 28
END

CALCULATES THE RADIAL AND AXIAL COMPONENTS OF THE MAGNETIC FIELD
_o ^ _1 P • PP ii o __=_'_cTO A _=_,,E _=R_u=AR =vuP USING oH,,nco...............rv.muLAS 7.10(6} AND (7)

R AND Z ARE THE FIELD PT COORDS NORMALIZED BY THE COIL RADIUS

BR AND BZ ARE THE FIELD COMPONENTS NORMALIZED BY THE CENTRAL FIELD

STRENGTH - MU I/ 2 A WHERE A IS THE COIL RADIUS

SUBROUTINE COILFDiRtZtBRtBZ}

HOLDI=(1.+R)**2.+Z*Z

HOLD2=(I.-R)**2o+Z*Z

T=HOLD2/HOLD1

CALCULATION OF ELLIPTIC INTEGRALS.

METHOD USED IS THAT OF ALGOITHMS 55 + 56 (COMMUNICATIONS OF THE ACMt

APR 61). ALGORITHM 165 (COM OF THE ACMIAPR 63} STATE THE ABOVE IS GOOD TO

SIX PLACESAND GIVES A SLIGHTLY MORE ACCURATE PROCEDURE. CERTIFICATION IS

IN THE SAME ISSUE WITH A CORRECTION OF ONE OF THE CONSTANTS.

FIELD COMPONENTS USING THIS AND ALGORITHM 185 DIFFER ONLY I DIGIT

IN THE SIXTH PLACE FOR R=O TO 2_Z=.3. THESE COMPONENTS DIFFER FROM

THOSE TABULATED BY BLEWETT (J OF APPLIED PHY&oNOV 47tVOL18oP 968o

ABOUT SIX DIGITS IN THE FIFTH PLACE, BLEWETT INTERPOLATES DWIGHTS TABLES

FOR K AND E AND THEREFORE IS PROBABLY NOT AS ACCURATE AS THIS,
ELLl=(((,O32024666_T+aO54544_O9)_T÷,O9793289_)_T+lo3862944)-

X(((,OlO944912_T+,O60118519)_T+,12475074I_T+oS)eLOGF(T)

ELL2=(((eO_O90509_T+,O85099193)_T+,_7920_I_T+loI-
X (((=01382999eT+,O8150224)_T+,24969795)_T}_LOGF(T)

BR=Z*(-ELLl+((le+R_R+Z_Z)/HOLD2)_ELL2)/(R_SQRTF(HOLD1)_3,1_15926)

BZ=(ELLl+((1=-R_R-Z_Z}/HOLD2)_ELL2)/(3,1_Z5926_SQRTF(HOLDll)
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RETURN
END

CDERIVIF CONTROL STATEMENT ITL=4,THIS SUBROUTINE RETURNS TO THE AXIAL SYDERIVE01

C MMETRIC PROGRAM. IF ITL-3 THE CURRENT AND FIELD CORRESPONDING TO DERIVE02
C ANY GIVEN LIFT FORCE{FACT) ARE CALCULATED. IF ITL=I OR 2 THE SUB- DERIVE03

C ROUTINE COMPUTES INCREMENTS OF THE COIL CURRENT{CRMT) AND GIVES A DERIVED4

C SET OF 5 VALUES FOR THE COIL CURRENT(CCRIT),FIELD STRENGTH(BCRITI)DERIVEO5
C AND LIFTING FORCE(FVI). IF ITL=I THE CRITICAL FIELD(BCI IS THE CRIDERIVEO6

C TERIA FOR INCREMENTING THE CURRENTS, IF ITL-2 THE MAX AND MIN LIFTDERIVEO?

C FORCE(FVMAX, FVMIN) ARE THE CRITERIA. DERIVEO8
SUBROUTINE DERIVE(XC,YC,AMPtFV,BMAX,BC,ITL,FVMIN,FVMAX,CMINtFACT,C

XCRIT)
I FORMAT(79HO F{R EACH OF THE FOLLOWING CURRENTS THE COIL COORDIDERIVEIO

XNATES IN CM ARE XC,YC= 2FI0.4) DERIVEII

2 FORMAT{IOX24H CURRENT IN ABAMP TURNS FlO.4P23H DER LIFT FORCE IN GDERIVE12
XMS FI4.5,24H DERIVED FIELD IN GAUSS F14.5}
FORMAT(IOX21H LIFT FORCE IN GRAMS FIO.5,16H FIELD IN GAUSS F10.5, DERIVE14

X25H CURRENT IN AB-AMP TURNS FlO,4)
WRITE OUTPUT TAPE 6,1,XC,YC
GO TO(IOt20,_O,40),ITL

10 CCRIT =BC_AMP/BMAX
ICRMT =(CCRIT - CMIN}IS.

CRMT =ICRMT

15 FVI =(CCRIT/AMP)_2._FV
BCRITI =CCRIT*BMAX/AMP

16 WRITE OUTPUT TAPE _,2oCCRIT,FVI,BCRITI

IFICCRIT-CMIN}30t3U,17

17 CCRIT=CCRIT-CRMT
GO TO 15

20 CMIN =SQRTF(FVMIN/CV)_AMP
ICRMT =(CCRIT - CMIN)/5.

IF (ICRMT}25,24,25

24 ICRMT=I
25 CONTINUE

CRMT -ICRMT

ICCRIT - CCRIT

CCRIT - ICCRIT

GO TO 15
30 CACT =SQRTF(FACT/FV)_AMP

BACT -CACT_BMAX,PAM o
WRITE OUTPUT TAPE Q,3,FACT,BACT,CACT

40 RETURN

END

DERIVE15

DERIVE16
DERIVEI?

DERIVE18
DERIVE19
DERIVE20

DERIVE21

DERIVE22
DERIVE23

DERIVE26
DERIVE28
DERIVE29

DERIVE30

DERIVE31
DERIVE32
DERIVE33
DERIVE34

DERIVE35
DERIVE36
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APPENDIX C. OFFSET AXES PROGRAM AND SUBROUTINES

C A-SYM FIELD CALCULATION ON THE SURFACE OF A CYLINDRICALLY SYMMETRIC BODY

( AXES OF COILS OFFSET FROM BODY AXIS A DISTANCE EPSLN

( BOUNDARY CONDITION_ ARE MET BETWEEN EACH DESCRIBING PT
DIMENSION X(II1},Y(111),VT(110,110),VNI(110,110)

DIMENSION VNO(I10),VTO(110),Q(110),B(110),BASYM(110)
11 FORMAT (40H LATERAL RESTORING FORCE IN DYNES AT PT 14,F12.7)

12 FORMAT (42H LINE OF ACTION OF HORIZONTAL FORCE IS X= F8.3)

13 FORMAT (28H MAXIMUM FIELD OCCURS AT PT 14,18H WITH COORDS X,Y= 2F1
C0.4,14H ITS VALUE IS F14.5)

14 FORMAT (26HOCOIL COORDS IN CM,XC,YC= 2F10.4,22H CURRENT IN AMP-TUR
XNS F10.4)

15 FORMAT (!4)

16 FORMAT (50H INCREASE IN MAXIMUM FIELD PER MM OFFSET IN GAUSS F14.5

C)

17 FORMAT (36H ASSYMETRIC SURFACE SOURCE STRENGTH E14.6)
18 FORMAT (24H CENTRAL FIELD IN GAUSS F14.5)

20 FORMAT (6F12.5)

21 FORMAT (3F12.5,12,14,F8.3)
22 FORMAT(22H FIELD IN GAUSS AT PT 14,F14.5)

23 FORMAT (21H RESTORING FORCE PER F8.4,20H CM OFFSET IN GRAMS F14.5,
C32H RESTORING CONSTANT IN DYNES/CM F14.5)

READ INPUT TAPE 5,15,NUM
NUP=NUM-1
LOFST=I

C LOFST=PROBLEM CONTROL,LOFST=I FOR SYMETRIC,LOFST=2 FOR ASSYMMETRIC
READ INPUT TAPE 5,20,(X{I)tI-ltNUM)
READ INPUT TAPE 5,20,(Y(I}tI=I,NUM)

26 READ INPUT TAPE 5,219YC,XCtAMP,LO,KOILNI_PSLN

C YC=COIL RADIUS IN CM, XC=X COIL COORD IN CM,AMP=CURRENT IN AMP-TURNS

C LO=O_TPUT CONTROL,LO=I GIVES FIELD DISTRUBUTION,LO=2 GIVES FORCE ONLY
C LO'I ALSO GIVES SIDE FORCE DISTRIBUTION.

C KOILN=COIL CONTROL,O=ONE COIL ONLY,I=FIRST COIL OF A SERIES
C 2=INTERMEDIATE COIL OF A SERIESo3=LAST COIL OF A SERIES

C EPSLN=COIL AXIS-BODY AXIS SPACING IN CM,IF ZER OR BLANK, ONE
C MILLIMETER IS ASSUMED.

IF(EPSLN) 31,30,31
30 EPSLN=,I
31AMP=AMP/IO,

WRITE OUTPUT TAPE 6,I4,XC,YCtAMP
10 READ TAPE 12,{(VNI(ItJ),J=l,NUP)gI-1,NUP)

READ TAPE 12,((VT (I,J),J=I,NUP),I=I,NUP)
GO TO (29,28),LOFST

28 REWIND 1_
29 CONTINUE

IF (KOILN-1)33,33,34
33 GO TO (35,34),LOFST
35 DO 34 K=I,NUP

B(K)=O.O

BASYM(K)=O,O

34 CONTINUE

BO=6,28318*AMP/YC
IF (LO-I) 38,37,38

37 WRITE OUTPUT TAPE 6,18,B0

38 CONTINUE

DO 56 K-I,NUP
XMDPT=(X(K+I)+X(K))/2.

YMDPT=(Y(K+I)+Y(K))/2,
HOLD1-SQRTF((X{K+I)-X(K))**2,+(Y(K+I)-Y(K))**2.)
COSB=(X(K+I}-X(K))/HOLD1

SINB=IY(K+I)-Y(K))/HOLD1
ZS=(XC-XMDPT)/YC
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RHOS=YMDPT/YC
GO TO (39o40)tLOFST

39 CALL COILFD(RHOStZS_BRHO,BZ)
BRHO=BRHO_BO
BZ=BZ*BO
VNO(K)=BRHO_COSB+BZWSINB
VTO(K)=BRHO_SINB-BZ_COSB

GO T056
40 CALL FLDDER(RHOStZStDBRDR_DBZDR)

DBRDR=DBRDR_BO/YC
DBZDR=DBZDReBO/YC
VNOIK}=DBRDR_COSB+DBZDR_SINB

VTO(K)-DBRDR*SINB-OBZDR*COSB
56 CONTINUE

DO 60 J=ltNUP

Q(J)=O,O
DO 60 K=ItHUP

60 Q(JI=Q(J}-VNI(JtK)*VNO(K)

C CALCULATES THE SURFACE SOURCE STRENGTH
GO TO (61_41),LOFST

41 DO 45 K=ltNUP
BASYM(K)=VTO(K}+BASYM(K)

DO 44 J=ltNUP
44 BASYM(K)=BASYM(K)+Q(J)_VT(KtJ}

45 CONTINUE

GO TO 65
61 DO 65 K=ltNUP
62 B(K)=VTO(K)+B(K)

DO 64 J=IoNUP

64 B(K}=B(K)+Q(J)_VT(KtJ)

65 CONTINUE
GO TO (46t48)tLOFST

46 LOFST=2

GO TO 10

48 LOFST'I
IF (KOILN) 72,72_71

71 IF (KOILN-3) 26t72972

72 CONTINUE
C LAST OR ONLY COILtCALCULATE FORCE AND BMAXtBS

FH=O,0
T=O,O

DO 66 N=ltNUP
FHl=EPSLN_(Y(N+l)+Y(N))_(X(N+l)-X(N))_B(N)_SASYM(N)_,125

FH=F_+FH1
T=FHI*(X(N+I)+X(N))_.5+T
T=T-EPSLN_(Y(N+I)+Y(N))_(Y(N+I)+Y(N))_(Y(N)-Y(N+Z))*B(N) _

I BASYM(Nl/16,
B(N)=B(N)+EPSLN_BASYM(N}

IF (LO-1} 66_67_66

67 WRITE OUTPUT TAPE 6122_NtB(N)
WRITE OUTPUT TAPE 6_17_Q(N)
WHITE OUTPUT TAPE 6tlloNtFH1

66 CONTINUE
T=T/FH

C T=SIGMAIFHI*X)ISIGMA FH1
CONST=FH/E_SLN
FH=FHIg81,
WRITE OUTPUT TAPE 6t23tEPSLNtFHgCONST
WRITE OUTPUT TAPE 6_12tT

73 CONTINUE
BMAX=B(1)_B(1)
NMAX=2
DO 70 K=29NUP
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C FDD

C

C
C

BMIN=B{K)_B(K)

IF (BMIN-BMAX} 70,70,69

69 BMAX-BMIN

NMAX-K

70 CONTINLIE

XNMAXI(X(NMAX+I|+X(NMAX)I/2.

YNMAX=(Y(NMAX+I)+Y(NMAX))/2.

BMAX=SQRTF(BMAX)

WRITE OUTPUT TAPE 6.13.NMAXtXNMAX,YNMAX,BMAX

BASY=.OIeBASYM(NMAX)/EPSLN

WRITE OUTPUT TAPE 6.16.BASY

79 GO TO 26

81 END

CALCULATES THE DERIVATIVES OF THE FIELD COMPONENTS WITH RESPECT TOFDD

R. R AND Z ARE THE RADIAL AND AXIAL COORDIN_NTS NORMALIZED BY THE FDD

COIL RADIUS. THE DERIVATIVES ARE NORMALIZED BY BO/A WHFRE BO

THE CENTRAL FIELD AND A IS T_E COIL RADIUS.

SUBROUTINE FLDDER(R,Z,DBRDR,DBZDR}

CALL COILFD(R,Z,BR.gZ)

MOLDI-(I.+R)_(1.+R}+Z*Z

HOLD2=(1.-R)_(I.-R)+Z_Z

T=HOLD2/HOLD1

ELL2=(((.O40905094_T+.O85099193)_T+.44479204)_T+1.)-

X(((.OI382999_T+.O8.ISO224)_T+.2_969795)_T}_LOGF(T)

HOLD3=R*R-I.+Z*Z

DBZDR=-BZ_(I.+R)/HOLD1

HOLD2=HOLDI_HOLD2

DBRDR=-BR*{(I./R)+|:*HOLD3/HOLD2)

HOLD3=].-ReR+Z*Z

DBZDR=DBZDR÷BR*II.-R)*HOLD31(Z*HOLD2}

E-6._Z_HOLD3_EIL2_SQRTF(HOLDI)/(3.14159*HOLD2*HOLD2}

DBRDR=DBRDR+E

END OF DERIVATIVE OF BR

E=HOLDI-R*(3.*R+I.)

E=E*HOLD31HOLD2-1,

E=2,_ELL2_E_SORTF(HOLDI)/(3=]_I59_RWHOLD2)

DBZDP=DBZDR÷E

END OF DERIVArlVE OF BZ

RETURN

END

IS FDD

FDr)

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

FDD

Ol

02

03

04

O0

05

07

08

09

I0

11

12

14

15

16

17

18

19

20

21

22

24

25

26

27
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APPENDIX D. INCLINED AXES PROGRAM AND SUBROUTINES

C TILT FIELD CALCULATION ON THE SURFACE OF A CYLINDRICALLY SYMMETRIC BODY

C BODY TILTED THROUGH AN ANGLE DELTA

C BOUNDARY CONDITIONS ARE'MET BETWEEN EACH DESCRIBING PT
DIMENSION X(111),Y(lI1),VT(IlO,110)tVNI(IlOt110)

DIMENSION VNO(IIOIgVTO(I101gQ(110),B(110I,BASYM(110]

11 FORMAT (40H LATERAL RESTORING FORCE IN DYNES AT PT 14,F12.7)
12 FORMAT (28H RESTORING MOMENT CONSTANT9 FI4.5,35H DYNE-CM/RADIAN FO

XR TILTS ABOUT X= F8.3)

13 FORMAT (28H MAXIMUM FIELD OCCURS AT PT 14,18H WITH COORDS X,Y= 2F1
C0.4,14H ITS VALUE I$ F14.5)

14 FORMAT (26HOCOIL COORD5 IN CM,XC,YC= 2F1O.4,22H CURRENT IN AMP-TUR

XNS FIO.4)
15 FORMAT (14)

16 FORMAT (56H INCREASE IN MAXIUM FIELD PER 1/50 RADIAN TILT IN GAUSS

X F14.5)
17 FORMAT (36H ASSYMETRIC SURFACE SOURCE STRENGTH E14.6)
18 FORMAT (24H CENTRAL FIELD IN GAUSS F14.5)

20 FORMAT (6F12.5)
21 FORMAT (3FI2.5,12,14,2F8.9)

22 FORMAT(22H FIELD IN GAUSS AT PT I4,F14.5)

23 FORMAT (28H NET LATERAL FORCE IN GRAHS FI4,5,20H FOR INCLINATION 0

1F Fg.A,BH RADIANS)
REWIND 12

READ INPUT TAPE 5,15,NUM
NUP=NUM-1

LOFSTml
C LOFST-PROBLEM CONTROL,LOFST=I FOR SYMETRIC,LOFST=2 FOR ASSYMMETRIC

READ INPUT TAPE 5,20,(X(1),I-I,NUM)

READ INPUT TAPE 5,20,(Y(1),I-I,NUM)

26 READ INPUT TAPE 5,21,YC,XC,AMP,LO,KOILN,DELTA,XT
C YC=COIL RADIUS IN CM, XC=X COIL COORD IN CM,AMP=CURRENT IN AMP-TURNS

C LO=OUTPUT CONTROL,LO=I GIVES FIELD DISTRUBUTION,LO=2 GIVES FORCE ONLY
C LO:I ALSO GIVES SIDE FORCE DISTRIBUTION.

C KOILN'COIL CONTROL,O=ONE COIL ONLY,)=FIRST COIL OF A SERIES
C 2=INTERMEDIATE COIL OF A SERIES_3=LAST COIL OF A SERIES

C DELTA - TILT ANGLE IN RADIANS,IF ZERO OR BLANK,,02 I5 ASSUMED

C XT=X LOCATION OF TILT AXIS (YTzO)

IF(DELTA) 31,30,31
30 DELTA=.02
31AMP=AMP/IO.

WRITE OUTPUT TAPE 6,14,XC,YC,AMP

10 READ TAPE I2,((VNI(I,JI,J'I,NUP)gI=I,NUP)
READ TAPE 12,((VT (I,J),J=loNUP)tI=I,NUP)

GO TO (29,28),LOFST
28 REWIND 12

29 CONTINUE

IF (KOILN-1) 33,33,34
33 GO TO (35,34),L)FST
35 DO 34 K=I,NUP

B(K)=O,O

BASYM(K)=O.O
34 CONTINUE

BO'6,28318_AMP/YC
IF (LO-1) 38,37,38

37 WRITE OUTPUT TAPE 6,18,B0
38 CONTINUE

DO 56 K'lgNUP
XMDPT'(X(K+I)+XIK))/2,
YMDPT=(Y(K+I)+YIK))/2,

HOLDImSQRTF((X(K+I)-X(K)I_2,+(YIK+I)-Y(K))_t2o)

COSB=(XIK+I)-X(K))/HOLD1
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SINB=(Y(K+_)-Y(K))/HOLDI

ZS=()C-XMDPT)/YC
RHOS=YMDPT/YC
CALL COILFD(RHOStZS,BRHO,BZ)
BRHO=BRHO_BO

BZ=BZ_BO

GO TO (39o40}tLOFST

39 CONTINUE
VNO(K)=BRHO*COSB+BZ*SINB

VTO(K}-BRHOeSINB-BZ*COSB
GO TO 56

40 CALL BDERIV(RHOSIZSoDBRDRgDBZDRtDBRDZoDBZDZ}
DBRDR=DBRDReBO/YC
DBZDR=DBZD_BO/YC
DBROZ=DBRDZmBO/YC

DBZDZ=DBZDZeBOIYC

HOLO1-BZ+IXMDPT-XT)eDBRDR+YMDPT_OBRDZ

HOLD2=-BRHO+(XMDPT-XT)_DBZDR+YMOPT_DBZDZ
VNO(K)-HOLDIICOSB+HOLD2*SINB
VTO(K)=HOLDI_SINB-HOLD2*COSB

56 CONTINUE

DO 60 J=lgNUP
Q(J}=O.O

DO 60 K=ltNUP

60 Q(J)=Q(J}-VNI(JtKI*VNO(K)

C CALCULATES THE 3URFACE SOURCE STRENGTh
GO TO (61t41)oLOFST

41 DO 45 K=ltNUP

E,ASYM(K}=VTO(K}_BASYM(K}
DO 44 J=I_NUP

44 BASYM(K)mBASYM(K)+Q(J)_VT(KtJ)
A5 CONTINUE

GO TO 48
61 DO 65 K=ltNUP
62 B(KI=VTO(K)+B(K]

DO 64 J=ltNUP
64 B(KI=B(KI+Q(J)_VT(KoJ)

65 CONTINUE
46 LOFST=2

GO TO 10
48 LOFS1=I

IF (KOILN) 72t72o71
71 IF (KCILN-3} 26t72_72
72 CONTINUE

C LAST OR'ONLY COILgCALCULATE FORCE AND BMAXtBS
FH=O.O
T=O.O
DO 66 N=I*NUP "

FH1=OELTA_(Y(N+1)+Y(N))_(X(N+1}-X(N))_B(N}_BASYM(N)*,125
FH=FH+FH1

T=(XT+XT-X(N)-X(N+I])_FHI_,5+DELTAt{Y(N+I}+Y(N))*(y(N+I}+Y(N)}_
1 (Y(NI-Y(N+l))eB(*I)_BASYM(N)/16.+T

B(NI=B(N)+DELTA_B.SYM(N)
IF [LO-1) 66P67p66

67 WRITE OUTPUT TAPE 6t22tNtB(N)
WRITE OUTPUT TAPE 6,IT_Q(N}
WRITE OUTPUT TAPE 6_111NtFH1

66 CONTINUE
FH=FH/981=
T=-T/DELTA

C T= TORQUE PER RADIAN
WRITE OUTPUT TA'E &_23_FHgDELTA
WRITE OUTPUT rAPE 6t121TtXT
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73 CONTINUE

8MAX=B(1)_B(1)

NMAX=2

DO 70 K-2,NUP

BMIN=B(K)_B(K)

IF (BMIN-BMAX) 70o?0969

69 BMAX-BMIN

NMAX=K

70 CONTINUE

XNMAX=IX(NMAX+I)÷X(NMAX)}/2,

YNMAX=(Y(NMAX+t)÷Y(NMAX))/2,

BMAX=SQPTF(BMAX)

WRITE OUTPUT TAPE 6tI3,NMAX,XNMAXgYNMAXtBMAX

BA_Y=,O2_BASYMINMAX)/DELTA

WRITE OUTPUT TAPE 6,16,BASY

79 GO TO 26

81 END

C BDR

C

C
C

C

CALCULATES THE DERIVATIVES OF THE FIELD COMPONENTS WITH RESPECT TO

R, R AND Z ARE THE RADIAL AND AXIAL COORDINANTS NORMALIZED BY THE FDD 02

COIL RADIUS, THE DERIVATIVES ARE NORMALIZED BY BO/A WHERE BO IS FDD 03

THE CENTRAL FIELD AND A IS THE COIL RADIUS, FDD 04

ALSO CALCULATES DERIVATIVES WITH RESPECT TO Z.

SUBROUTINE BDERIV (R,Z,DBRDR,DBZDR,DBRDZ,DBZDZ}

CALL C01LFD(R,Z,BRiBZ) FDD 05

HOLDI=(I,÷_)I(I,+RJ÷ZiZ FDD 07

HOLD2=iI,-R)_(I,-RI+Z_Z FDD 08

T=HOLD2/HOLDI FDD 09

ELL2=(((,o_ogosO94_T+,O85099193)_T+,44479204)_T+I,) - FDD 10

X(((,OI382999_T+,OBISO22_)*T÷,24969795)_T)_LOGF(T) FDD 11

HOLD3=R_R-I,+Z_Z FDD 12

DBZDR=-BZ_(I,+_)/HOLD1

HOLO2-HOLDI_HOLD2 FDD 14

DBRDR=-BR_((I,/R)+R_HOLD3/HOLD2) FDD 15

HOLD3=I,-R*R÷Z*_ FDD 16
DBZDR=DBZDR+BR*(1,-R)_HOLD3/(Z_HOLD2) FDD 17

E=6,*Z_HOLD3eELL2eSQRTF(HOLD1)/(3,14159_HOLD2_HOLD2) FDD 18

DBRDR=DBRDR+E FDD 19
END CF DERIVATIVE OF BR FDD 20

E=HOLD1-R_(3,*R+I,) FDD 21

E=E_HOkD31HOLD2-1, FDD 22

E=2,_ELL2_EWSORTFIHOLDI)/i3,14159_RIHOLD2)

DBZDR=DBZDR+E FDD 24'

END OF DERIVATIVE OF BZ FDD 25

DBRDZ=DBZDR

END OF Z DERIVATIVE OF BR

DBZDZ=-(DBRDR+BR/F}
END OF Z DERIVATIVE OF BZ

RETURN FDD 26

END FDD 27
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